
Title: Control software for a sailing
robot

Module code: SEM9060

Author:Colin Sauzé

Supervisor: Mark Neal

Subitted in partial ful�lment of an MEng degree in software engineering at the University of
Wales, Aberystwyth.

Rhif y modiwl
Module number

Dyddiad
Date

Nifer y tudalennau a gyflwynwyd
Number of pages handed in

Rhif Cyfair y Myfyriwr/
Student Reference Number

...

Cyfarwyddiadau

1. Lluniwyd y ffurflen hon i sicrhau y bydd eich
gwaith cwrs yn cael ei farcio'n ddi-enw.

2. Rhowch eich enw yn y blwch yng nghornel uchaf
ochr dde y dudalen hon. Plygwch y gornel uchaf
ochr dde a'i selio (defnyddiwch y papur gludiog a
roddir ichi yn y dderbynfa) er mwyn cuddio eich
enw.

3. Darllenwch lawlyfr y myfyrwyr ar y we i sicrhau
eich bod yn ymwybodol beth yw llên-ladrad.
Darllenwch y Datganiad Gwaith Gwreiddiol isod
a'i arwyddo yng nghornel uchaf ochr dde y
dudalen i ddweud mai eich gwaith chi yw hwn.

4. Cysylltwch y dudalen yma â’ch gwaith at ei
gilydd trwy ddefnyddio’r styffylwr o'r dderbynfa.

5. Cyflwynwch eich aseiniad yn ôl cyfarwyddyd y
darlithydd.

Datganiad Gwaith Gwreiddiol
Trwy arwyddo'r uchod, yr wyf yn cadarnhau mai:

Fy ngwaith gwreiddiol i yw hwn, oni bai ei fod wedi nodi
yn eglur fel arall.

Deallaf fod y gosb am lên-ladrad ac unrhyw ymddygiad
annheg arall yn llym, ac y gallai arwain at golli marciau
neu hyd yn oed beidio â dyfarnu gradd.

Yr wyf wedi darllen yr adrannau am ymddygiad annheg yn
Llawlyfr Arholiadau'r Myfyrwyr a'r adrannau perthnasol
yn rhifyn cyfredol Llawlyfr Myfyrwyr yr Adran
Cyfrifiadureg.

Yr wyf yn deall rheoliadau'r Brifysgol ar y materion hyn a
chytunaf i gadw atynt.

Instructions

1. This form is designed to ensure that your
coursework is marked anonymously.

2. Please enter your name in the space provided at
the top right of this page. Fold over and seal down
the top right-hand corner of the page (using the
gummed slip provided at reception) in order to
conceal your name.

3. Please read the student handbook on the web to
ensure that you are aware of the plagiarism issue.
Read the Declaration of Originality below and
sign in the space provided at the top right of this
page to say that the work is your own.

4. Fasten this page to your work using the stapler
available from reception.

5. Please submit your assignment as directed by
your lecturer.

Declaration of Originality

In signing above, I confirm that:

This submission is my own work, except where clearly
indicated.

I understand that there are severe penalties for plagiarism
and other unfair practice, which can lead to loss of marks
or even the withholding of a degree.

I have read the sections on unfair practice in the Students’
Examinations Handbook and the relevant sections of the
current Student Handbook of the Department of Computer
Science.

I understand and agree to abide by the University’s
regulations governing these issues.

Cyfenw/Surname ..

Enwau Cyntaf/ First Names..

..

Llofnod/Signature...

Acknowledgements

I would like to thank Dr. Mark Neal for his supervision of this project, help with hardware issues
and the time he took to help with testing. I would also like to thank Dr. Fred Labrosse for his
co-supervision and help with compass issues. I am also very grateful to Mr. Tero Kuusela for his
help with the simulator and to all the members of the Psion-Linux and Jornada-Linux mailing
lists who were of excellent assistance on a variety of hardware and Linux problems. Finally I
would like to thank Claire Gri�ths for her loving support throughout this project.

Abstract

This project implements both PID and fuzzy logic controllers to allow a small sailing robot to
sail a pre-determined course based upon compass headings. A simulator was adapted from an
open-source project in order to aid testing of these algorithms, actual testing on a lake proved
the ability to sail a reasonably accurate course. Given this ability a sailing robot could be used
to maintain a given position within a few hundred metres, making it a suitable alternative to
data buoys for long-term oceanographic monitoring. Such robots may also be suited to coastal

oceanographic monitoring, tracking sea life, surveillance and border patrol operations.
Additional work is still required in the areas of concurrency, failure monitoring and adaption,

collision avoidance, remote operation and accurate navigation.

Contents

1 Project Background 1
1.1 Overview of existing systems . 1

1.1.1 Moored data buoys . 1
1.1.2 Drifting data buoys . 1
1.1.3 Ships . 1
1.1.4 Satellites . 2

1.2 Project Justi�cation . 2
1.3 Project Hardware . 2

2 Requirements speci�cation 3
2.1 Requirements Overview . 3
2.2 Hardware Requirements . 3
2.3 Software Requirements . 4

2.3.1 Servo and Sensor control software . 4
2.3.2 Navigation Requirements . 4
2.3.3 Simulator Requirements . 4
2.3.4 Arti�cial Intelligence Algorithms . 5
2.3.5 Portability Requirements . 5
2.3.6 Data Logging Requirements . 5
2.3.7 Con�guration Requirements . 5

2.4 What is not required . 5

3 Market Analysis 7
3.1 Why is the system needed? What is the problem it will solve? 7
3.2 What kind of related system are there in production and research at present? . . 8

3.2.1 Systems presently available . 8
3.3 Systems currently being researched . 9

3.3.1 Other sailing robots . 9
3.3.2 Powered Autonomous Surface Craft . 10

i

3.3.3 Underwater vehicles . 10
3.3.3.1 Robotic Fish and other biomimetic systems 10
3.3.3.2 Autonomous Submarines . 11
3.3.3.3 Argo Floats . 11
3.3.3.4 Ocean Gliders . 11

3.3.4 Autonomous Ocean Sampling Networks 11
3.4 Are there any existing systems that can be adapted to do this job? 12
3.5 Is there any wider demand for this product? . 12
3.6 What are the risks involved in producing, delivering, supporting and using this

system? . 12
3.6.1 Risks during development . 12
3.6.2 Risks to end-users and the environment 13
3.6.3 Support Issues . 14
3.6.4 What issues concerning intellectual property rights need to be considered

in relation to this project? . 14

4 Design 15
4.1 Hardware Architecture . 15

4.1.0.1 The Basic Stamp . 15
4.1.1 The Psion Series 5mx . 15
4.1.2 The Palm M100 . 15
4.1.3 Choice of Hardware . 16

4.2 Software Environment Choices . 16
4.2.1 Available Operating Systems . 16
4.2.2 Cross-compilation Environments . 17

4.3 Overall Software design . 17
4.3.1 Detailed design of the micro-controller code 18
4.3.2 Implementation Platform . 19
4.3.3 Serial Protocol Design . 19

4.4 Detailed design of medium level code . 20
4.4.1 Implementation Platform . 20
4.4.2 The TCP/IP Interface . 21

4.4.2.1 Error Handling in the TCP/IP Interface. 23
4.4.3 Using the calibration data . 23

4.5 The Simulator . 24
4.5.1 Simulator Modes . 25

4.5.1.1 Simulator Sail Setting Algorithm Design 25

ii

4.5.1.2 Simulator Rudder Setting Algorithm Design 27
4.6 Design of the high level code . 28

4.6.1 Implementation Platform . 28
4.6.2 Sailing Algorithms . 28

4.6.2.1 Sailing Theory . 28
4.6.2.2 The Tacking Algorithm . 29

4.6.3 The PID Controller . 31
4.6.4 Fuzzy Logic Design . 33

4.6.4.1 Fuzzy Logic Controller background 33
4.6.4.2 Fuzzy logic code design . 33
4.6.4.3 Fuzzy Logic for rudder control 34
4.6.4.4 Fuzzy Logic for sail control . 34

4.7 Data logging . 34
4.8 Other Design Issues . 35

5 Calibration methods and results 36
5.1 Rudder Calibration . 36
5.2 Compass Calibration . 37
5.3 Sail and Wind Sensor Calibration . 37

6 Implementation Discussion 40
6.1 Overview of the implementation . 40

6.1.1 Basic Stamp Implementation . 40
6.1.2 Server Implementation . 41

6.1.2.1 Inter-Command delays and Caching Rudder and Sail values . . . 42
6.1.2.2 Automatic Wind Sensor Recalibration 42

6.1.3 Simulator Implementation . 43
6.1.4 General Client Implementation . 44
6.1.5 PID Implementation . 44

6.1.5.1 Simulator PID Tuning . 45
6.1.6 Fuzzy Logic Implementation . 46
6.1.7 Linux Con�guration . 47

7 Testing 48
7.1 Software Component Testing . 48

7.1.1 Testing the Basic Stamp Code . 48
7.1.2 Testing the Server code . 48
7.1.3 Testing the Common Client code . 48

iii

7.1.4 Testing the PID Controller . 49
7.1.5 Testing the Fuzzy Logic Controller . 49
7.1.6 Testing the Simulator . 49
7.1.7 Test Coverage . 50

7.2 Algorithm Performance Testing . 50
7.2.1 Algorithm Evaluation Methods . 50

7.2.1.1 Distance Covered vs Straight Line Distance from start to �nish . 50
7.2.1.2 Distance from goal . 51

7.3 Full System Testing . 51
7.3.1 Simulator Tests . 51
7.3.2 Lab Testing . 52
7.3.3 Real world Testing . 53

7.4 Using the evaluation methods e�ectively . 53
7.4.1 The Beam Reach test . 53
7.4.2 The Triangular Course test . 54

7.5 Testing Results . 55
7.5.1 Simulator Test Results . 55

7.5.1.1 PID Controller Results . 55
7.5.1.2 Fuzzy Logic Controller Results 56

7.5.2 Real World Test Results . 56
7.5.2.1 First Test - April 8th 2005 . 56
7.5.2.2 Second Test - April 27th 2005 57
7.5.2.3 Third Test - April 28th 2005 . 58

7.5.3 Known Bugs . 60
7.5.3.1 Jornada leading byte upon server restart 60
7.5.3.2 Stability of the Basic Stamp code. 60
7.5.3.3 Sail updates too frequent. 60
7.5.3.4 Fuzzy Logic Controller fails to centre properly 62

8 Project History 63
8.1 A month by month account of the project . 63

8.1.1 October 2004 . 63
8.1.2 November 2004 . 63
8.1.3 December 2004 . 63
8.1.4 January 2005 . 64
8.1.5 February 2005 . 64
8.1.6 March 2005 . 64
8.1.7 April 2005 . 64

iv

9 Evaluation and Conclusion 65
9.1 PID vs Fuzzy Logic, Which worked best? . 65
9.2 Evaluation . 65

9.2.1 The �nal product compared with requirements speci�cation 66
9.2.1.1 Hardware Requirements . 66
9.2.1.2 Sensor and Servo control software 66
9.2.1.3 Arti�cial Intelligence Algorithms 66
9.2.1.4 Simulator Requirements . 66
9.2.1.5 Navigation Requirements . 67
9.2.1.6 Portability Requirements . 67
9.2.1.7 Data Logging Requirements . 67
9.2.1.8 Con�guration Requirements . 67

9.2.2 Limitations of the current design . 68
9.2.2.1 Stamp delays and communication problems 68
9.2.2.2 Sail setting time . 68
9.2.2.3 Accuracy and repeatability of sensors and servos 68
9.2.2.4 Wire wrapping around the mast 68
9.2.2.5 Lack of GPS . 69
9.2.2.6 Unintelligent tacking and jibing 69
9.2.2.7 Simulator . 69
9.2.2.8 Additional algorithm evaluation methods 70

9.3 If I was going to do it all again, what would I do di�erently? 70
9.3.1 Run all code on a single hardware platform 70
9.3.2 Serial Port interface to the simulator . 70
9.3.3 Find a more suitable testing environment 70
9.3.4 Better GPS Logging . 71
9.3.5 Better Wireless Control . 71
9.3.6 Change the sail setting algorithm . 71

9.4 Possible directions for future work . 72
9.4.1 Hardware Improvements . 72

9.4.1.1 Improved Power Source . 72
9.4.1.2 Improved Sensor and Servo Accuracy 72
9.4.1.3 Larger Sail size . 72
9.4.1.4 Larger Boat size and shape more suited to sea conditions. 72
9.4.1.5 Fault Detection and Redundancy 72
9.4.1.6 Scienti�c Instrumentation and access to data 73

v

9.4.1.7 Navigation . 73
9.4.1.8 Communications . 74

9.4.2 Software Improvements . 74
9.4.2.1 Improved concurrency and modular design 74
9.4.2.2 Self Tuning Algorithms . 74
9.4.2.3 Improving adaptability and survivability with Biologically in-

spired techniques. 75
9.4.2.4 Weather Awareness . 75
9.4.2.5 Use of new cross compilation systems 75

9.4.3 Fleet Management and Telecommunications 76
9.4.4 Collision Avoidance . 76

9.4.4.1 Detecting imminent collisions via World Models and Geographi-
cal Information Systems . 76

9.4.4.2 Detecting Collisions via realtime sensors 76
9.5 Conclusion . 77

Glossary 78

Bibliography 82

A Diagrams and Photos showing a detailed design of the robot. 85

B Paper protractor used for calibration measurements 87

C Original protocol design as supplied by Dr. Mark Neal. 88

D Di�erences between original Basic Stamp code and �nal version. 90

E Sail Servo and Wind Sensor Calibration Data 96

F Rudder Calibration Data 101

G Compass Calibration Data 102

H Sample logging output (Simulator Generated) 105

I Sample logging output (Boat Generated) 106

J Sail setting lookup table for the PID controller. 107

K Fuzzy Logic Set De�nition Tables 108

L Init scripts for use on the Psion 111

vi

M Spreadsheet used to verify heading error outputs 113

N GPS Plots of the test runs 114

O Heading/Time Plots of the test runs 117

P Simulator Testing Plots 121

Q Original Project Timetable 124

vii

List of Figures

1.1 A photo of the sailing robot. 2

3.1 Map showing locations and owners of all moored and drifting data buoys. Values
in brackets indicate the number of drifting buoys followed by the number of moored
buoys. Source Operations and Achievements of the DBCP [1] 9

4.1 The di�erent layers of the software architecture. The high level code may interface
either to the simulator or to the real robot. 18

4.2 Two screenshots of tracksail, on the left the boat is sailing almost into the wind
and the sail is only able to go out a small amount despite the slider being set to
full. On the right the wind is almost directly behind the boat and the sail is out
as far as possible. 24

4.3 Diagram showing the di�erent points of sail. Source: Sailing and the Tech Dinghy
[2] . 29

4.4 Diagram illustrating the situations that the tacking algorithm must deal with. . 31
4.5 General equation for a PID controller source Modern Control Technology page

381 [3]. 32

5.1 Formula to convert compass values. 37
5.2 The compass calibration setup. By co-incidence the right side of the room shown

is almost exactly magnetic north. 38
5.3 The setup for measuring the angle of the sail. A piece of copper wire is attached

to the mast below the sail and facing the same direction as the sail, although its a
bit di�cult to see in this image. The piece of paper on the deck has angles marked
out every �ve degrees, with zero degrees facing towards the front of the boat. . . 38

5.4 The setup for wind testing. The fan was later moved to be at 45 degrees to the
boat. 39

5.5 A more detailed view of the wind sensor on top of the mast. 39

6.1 The equation for tuning a PID controller using the Zeigler-Nichols Ultimate Cycle
Method, source Modern Control Technology page 381 [3]. 45

6.2 A graph showing the current heading error against time for the PID tuning at-
tempts. The target heading was zero degrees and the start heading 70 degrees. . 46

7.1 Example plot showing how course e�ciency can be measured. 51
7.2 Example plot showing the path taken by the boat during a simulator run. It is also

possible to plot the heading against time instead of the explicit X-Y co-ordinates. 52

viii

7.3 An example plot showing the course taken during the beam reach test. 54
7.4 An example plot showing how a triangular course is performed. It should be

noted that a triangular course does not always require sailing into the wind and
can sometimes be performed without repeatedly tacking across the wind. 55

7.5 GPS Plot of the �rst test in which the sail jammed and the boat was eventually
pushed onto shore. 57

7.6 Photo illustrating the wire wrapped around the mast, this prevented the sail from
turning and in turn prevented any further commands from being issued as the sail
code continuously attempted to correct this. 58

7.7 Four stills extracted from video of the second test showing the extent to which
oscillation was occurring. 59

A.1 Diagram showing the parts of the boat in detail. Courtesy of Dr. Mark Neal. . . 86

B.1 The protractor which is placed around the mast in order to calibrate the sail. . . 87

K.1 Fuzzy logic set de�nitions for classifying heading error. 108
K.2 Fuzzy logic set de�nitions for setting the rudder. 109
K.3 Fuzy logic set de�nitions for classifying wind direction. 109
K.4 Fuzzy logic set de�nitions for setting the sail position. 110

L.1 The /etc/init.d/S46irda script used to start the infra-red device upon boot on the
Psion. 111

L.2 The modi�ed /etc/initab script used to automatically start a login console on
the infra-red port. This also causes the login program (called getty) to respawn
everytime it exits. 112

N.1 The GPS plot for the �rst journey. 114
N.2 The GPS plot showing the three journeys made during the second test run. For

all three of these the proportional constant was set to a value of two. The trips
to return the boat to its start point have been removed. 115

N.3 GPS plot showing both the outbound and return journeys made during the third
test run. For this test the proportional constant was set to one. 115

N.4 GPS Plot of the fourth test. It was intended that the boat would sail to the same
point at which it turned in the previous test, then turn around sail back towards
the shore and repeat this three times. Unfortunately the wind dropped soon after
the boat reached the turning point. 116

O.1 Heading versus time plot for the �rst test run. As the code stopped logging early
in this test it does not cover the full journey shown in the GPS plot. 117

O.2 Heading versus time plot for the second run. All three runs are shown as is the
time spent carrying the boat back to the original start position. 118

O.3 Heading versus time plot for the third run. Both the outward and return journeys
are shown. There is a small gap during which time no logging took place as the
sail was moving. 119

ix

O.4 Heading versus time plot for the fourth run. The green lines show the division
between each three minute run of the fuzzy logic controller. 120

P.1 Plot showing the course taken during the simulated PID controller beam reach test.121
P.2 Plot showing the course taken during the simulated PID controller triangle test. . 122
P.3 Plot showing the course taken during the simulated Fuzzy logic controller beam

reach test. 122
P.4 Plot showing the course taken during the simulated fuzzy logic controller triangle

test. 123

Q.1 Original timetable - October to December. 125
Q.2 Original timetable, January to May. 126

x

List of Tables

4.1 The value range for each of the variables handled by the Basic Stamp. 19
4.2 The protocol used for communication between the Psion and the Basic Stamp.

This is based upon a protocol originally designed for this system by Dr. Mark
Neal, see original speci�cation in Appendix C. 20

4.3 The commands available over the TCP/IP interface. 22
4.4 Error codes and their meanings. 23

6.1 Table showing the a�ects of using a PID controller to rotate the sail. 41
6.2 The results of performing the Zeigler-Nichols Ultimate Cycle PID Tuning with the

simulator. 45
6.3 The results of performing a trial and error based tuning with the simulator. . . . 45

7.1 The results of the simulated PID controller beam reach test. 55
7.2 The results of the simulated PID controller triangle test. 56
7.3 The results of the simulated fuzzy logic beam reach test. 56
7.4 The results of the simulated fuzzy logic triangular test. 56
7.5 Table describing each journey made during the test runs. It has been observed

that the GPS failed to take enough samples to show the true course taken by the
boat and as a result the e�ciency ratios are higher than they should be. 61

M.1 Example of the veri�cation spread sheets used to check the heading errors deter-
mined by the code. The heading error code was tested against all combinations
shown in this table in to show it was working correctly. If the output di�ered from
what was expected then the test fails. 113

xi

List of Algorithms

1 Pseudo code for the sail setting algorithm supplied in tracksail. 25
2 Pseudo code for the sail setting algorithm used to take the value supplied over

TCP/IP and apply it to tracksail. 26
3 Pseudo code for the modi�ed simulator rudder algorithm. 27
4 Pseudo code algorithm for handling tacking. 30
5 Pseudo code algorithm for a PID controller. 32
6 Fuzzy inference rules for rudder control. 34
7 Fuzzy inference rules for sail control. 34

xii

Chapter 1

Project Background

This project aims to produce a software suitable for controlling a small robotic sailing boat, so
that it is able to sail a pre-determined course. It is hoped that a sailing robot could be uesd as
a platform to gather oceanographic data. Currently manned survey ships, moored or drifting
data buoys and satellites are used to obtain oceanographic information such as monitoring ocean
currents, sea temperature and salinity, air temperature, air pressure, humidity, �sh stock moni-
toring, sea bed mapping, wave height and period etc. A sailing robot could potentially be used
to replace (or complement) these methods and allow for far greater �exibility and lower costs.

1.1 Overview of existing systems

1.1.1 Moored data buoys

At present there exists a number of moored data buoy networks, some of the most notable of
these are the EGOS (European Group on Ocean Stations) network in the North Atlantic, TOA
(Tropical Atmosphere Ocean project)/TRITON (Triangle Trans-Ocean buoy Network) network
in the South Paci�c and the PIRATA (Pilot Research Moored Array in the Tropical Atlantic)
network in the South Atlantic. These are able to monitor a number of conditions including sea
and air temperature, salinity, air pressure and rainfall. They then report their �ndings daily
by satellite. These buoys require a vast number of man hours to keep them in working order,
the TOA and TRITON network consists of over 400 buoys and each of these are visited twice
annually, requiring a total of 300 days of ship time per year [4].

1.1.2 Drifting data buoys

In addition to moored networks there are also �oating buoys which drift with ocean currents.
These tend gather similar information to the moored buoys and must be recovered by ship,
although many are washed ashore or lost [5].

1.1.3 Ships

Measurements are also taken from dedicated survey ships and ordinary commercial shipping,
known as "Ships of Opportunity" [6]. Although these can provide a valuable source of informa-
tion, the geographical area covered tends to be limited to normal shipping lanes.

1

1.1.4 Satellites

Satellite systems tend to be used for monitoring of large geographic areas such as the whole of
the North Atlantic. They are often used to monitor surface temperatures, winds, sea state and
cloud cover. Satellites have problems measuring under water data and also su�er from accuracy
problems given their distances from the seas they are measuring. A bigger problem of satellites is
the amount of time and money required to launch one, it is not uncommon for a satellite launch
to be delayed for years at a time, this problem is increased at present due to the US space shuttle
being out of service.

1.2 Project Justi�cation

The long term justi�cation for this project is to create a system which can complement and
perhaps even replace some of the other methods for gaining oceanographic data and in the
process reduce the costs, improve the quality and quantity of data collected and improve the
reliability and safety of these systems.

1.3 Project Hardware

A small prototype sailing robot has been completed by Dr. Mark Neal, the supervisor of this
project. This boat currently contains servos to control the sail and rudder, a wind direction
sensor, digital compass and a Basic Stamp small micro controller which communicates with
these devices and can provide access to them over an RS-232 serial link. This system also has
the potential to interface with other sensors such as a GPS receiver, thermometer, barometer
etc. A photograph of the boat is shown in �gure 1.1.

Figure 1.1: A photo of the sailing robot.

2

Chapter 2

Requirements speci�cation

2.1 Requirements Overview

This project aims to develop software that is capable of controlling a small robotic sailing boat
so that it is able to sail a pre-speci�ed course. The software will be able to manipulate the rudder
and sail of the boat by controlling attached servos and be able to read the current heading of
the boat and the direction of the wind from onboard sensors. This software must be capable of
running on a micro-controller, PDA or some other kind of portable computer which will �t inside
the existing boat and have the ability to run for several hours on its own batteries or those held
within the boat.

The software must be capable of reading information from the on-board sensors to determine
an appropriate setting for the rudder and sail in order to achieve the desired course. It should
also be capable of logging its decisions to a �le for later recovery and analysis. In addition to
logging the decisions it should also be possible to record the states of all the sensors and servos
over time. As well as performing control and logging functions the software should be able to
support the recording of some additional environmental variables such as the sea temperature,
wave height, salinity etc.

2.2 Hardware Requirements

Its is important that a suitable micro-controller or PDA is selected to run the control software.
This device will be responsible for running the software which will control all the servos, read from
the sensors, take decisions on setting the sails/rudder, recording the requested parameters and
possibly communicating via a radio link. The hardware system will need to be both physically
small enough and consume a small enough amount of electricity to �t within the boat and run
o� a battery internal to the device or the boat's own battery. It should also not generate an
excessive amount of heat as it will be placed within a small sealed compartment. Moving parts
(e.g. Hard drives) would also best be avoided as vibration from the general movement of the boat
could cause problems. As long as these requirements are not violated it should be possible to
use several micro-controllers or PDAs to run the software, this could include several controllers
of the same type or several di�erent ones. The devices used should be housed to protect them
from water damage and should be cheap and expendable as they may be lost at sea.

3

2.3 Software Requirements

The roles the software must perform can be broken down into two key areas, the �rst is the
actual control of the servos and sensors the other is the software which is responsible for making
the decisions as to how to set the servos based upon the information received by the sensors.

2.3.1 Servo and Sensor control software

The low level software sensor and control software must be capable of reading the current values
of the sensors and setting the states of the servos based on the values given to it by the high
level control software. It will be required to perform conversion of the values between real world
values such as degrees and values understood by the sensor/servos such as voltage levels or Pulse
Width Modulation timings. In all the sensor and servo control software must be able to read from
a digital compass and wind sensor as well as any environmental sensors such as a temperature
sensor for measuring sea temperature, there is also the possibility that it may need to be able to
read from a GPS receiver and the design should be able to cope with this need. It must also be
able to control the rudder, sail and possibly be able to transmit data over a radio link back to
shore.

2.3.2 Navigation Requirements

The system needs some means by which navigation can be performed in order to gather informa-
tion which can be used to keep the boat on course. There are two obvious forms this can take,
the �rst being GPS and the second being an onboard compass. Ideally any such system should
not be subject to variation resulting from the boat leaning and it should be quick to update to
allow rapid feedback between measurements and the maneuvers which keep the boat on course.
Given the relatively slow speed at which GPS updates and its inaccuracy in determining headings
when moving at slow speeds a compass may prove more suitable. However a compass (unless
placed on gimbals) is prone to a loss of accuracy as the boat leans and cannot detect if the boat
is drifting side ways or going backwards as a GPS can.

2.3.3 Simulator Requirements

As testing on a real robot in the water will be limited by weather conditions and time it will
be necessary to develop or identify a suitable simulator system which can (from the arti�cial
intelligence code's point of view) take the place of the lower level code and pretend that it is the
real robot. Such a simulator needs to provide the same basic information (wind direction and boat
heading) to the arti�cial intelligence algorithms while at the same time allowing the algorithms
to control the simulated rudder and sail. The simulator should be reasonably realistic and not
allow things which a real life boat clearly couldn't do, such as being able to sail directly into
the wind. However it cannot be expected that a simulator will be fully realistic and it cannot
be expected to accurately simulate all possible conditions as to do so could require immense
amounts of time and computing power. Ideally the simulator should give output in a graphical
form and to a data �le from which graphs can later be generated is also acceptable. It would
also be bene�cial if the simulator were able to vary the wind strength, wind direction and boat
heading in order to simulate changes in the environment, if this is not done then it is possible
that errors which only occur when small corrections are required do not get discovered until the
robot is tested in real life. Using a simulator also helps to reduce the risk to the project, should
the robot sink or become irreparably damaged in an early test run then it will be possible to
continue development using the simulator alone.

4

2.3.4 Arti�cial Intelligence Algorithms

The arti�cial intelligence level control algorithms are responsible for actually making the sailing
decisions and issuing appropriate commands to the low level interface, which will in turn send
them to the rudder/sail or return data from the sensors. The decisions taken by these algorithms
need to follow the basic rules of sailing as de�ned in many sailing manuals such as the Tech Dinghy
guide[2]. These algorithms will also be required to record their decisions so that analysis can be
performed later on to see why a given decision was taken.

As testing will require the use of a simulator, these algorithms should be able to interface with
either the simulator or the real robot without noticing the di�erence and requiring virtually
no recon�guration. It is possible that minor recon�guration could be required to overcome
di�erences between simulator behaviour and robot behaviour.

2.3.5 Portability Requirements

Where-ever practical all software should be written in a manner which allows it to be ported
to another CPU architecture and/or another operating system. This will allow the possibility
of changing any hardware which fails to perform as required with more appropriate hardware
without the need for a major re-write of any software. As a result of this requirement all software
should be written in portable languages such as C or Java where ever possible. There may still be
some situations where a speci�c piece of hardware requires a specialised development environment
to be used and thus results in non-portable code. The use of such hardware environments is
permitted, but the amount of code written for them should be kept at a minimum and alternatives
should be considered.

2.3.6 Data Logging Requirements

It is necessary to log a number of parameters at regular intervals during the running time of
the control programs in order to be able to decipher what happened and to understand the
decisions taken by the code at a later point in time. The code should log the current time or
time elapsed since the program started, the current heading and if possible position, the current
wind direction and the current desired heading. The data should be logged to a �le with each of
these parameters separated by a space or comma in order for easy analysis with a spreadsheet,
graphing application or custom written analysis tool.

2.3.7 Con�guration Requirements

It will be necessary to vary the parameters of the control software in order to perform testing.
Such parameters include the target position or heading, the amount of time to spend sailing
before the program exits and possibly parameters to control the exact behaviour of the arti�cial
intelligence algorithms.

2.4 What is not required

This project is not attempting to develop the actual hardware for a sailing robot, it is only
developing software to control one in order to sail a pre-determined cause. As this project is to
be implemented part time in under 9 months it cannot hope to implement every software system
required for a sailing robot. There is not be su�cient time to attempt to implement systems

5

for reliable bi-directional communications, collision avoidance, management of �eets of robots or
control of complex sensors such as rain and underwater sensors. However the software should be
built in such a manner that adding these features would not require any major changes to the
existing code.

6

Chapter 3

Market Analysis

3.1 Why is the system needed? What is the problem it will solve?

There are a number of possible applications for a sailing robot. These include long term o�-
shore oceanographic monitoring, coastal or inshore monitoring, surveying the sea, monitoring
marine life, providing surveillance to port entrances and remote un-patrolled stretches of coastline
or searching for mines. Of these the most obvious application is for o�-shore oceanographic
monitoring, which is currently performed via a combination of satellites, data buoys and survey
vessels. There are a number of major shortcomings with current oceanographic monitoring
systems which a sailing robot may be able to address.

Satellites tend to be very expensive to build and maintain, they also take years to construct
and can spend years waiting to be launched especially with the current lack of US space �ights.
Satellites also have problems with the resolution and accuracy of their sensors as a result of
the distance between the satellite and the environment it is monitoring, whereas a sailing robot
would be on the water surface and therefore would not be subject to these problems, it is also
far easier and cheaper to deploy than a satellite.

The use of survey ships tends to be a lot cheaper than a satellite, but coverage area is usually a
lot smaller and there is still the need to feed and supply the crew on-board which tends to limit
the length of time a survey can be carried out for. Where as a sailing robot can sail anywhere it
needs to go and remain there inde�nitely providing that it does not break down, has su�cient
power to maneuver itself and power the onboard equipment. Sailing robots could be instructed
to sail a pre-determined course (e.g. across an entire ocean), monitor ocean conditions as they
move and then report this information back to shore via a satellite link. This would remove the
limitations of following normal shipping lanes and avoiding hazardous waters (e.g. the Antarctic
in winter).

Data buoys (both moored and drifting) solve some of these problems as these can stay on station
for years, large networks (e.g. TOGA and GOOS) can be laid to give wide area coverage and at
relatively low cost. However data buoys still require a ship(s) to launch them, repair them and in
the case of drifting buoys recover them. Deploying several hundred buoys into a moored network
such as TOGA is a very labour intensive process and takes several ships, several years to achieve
and once a network such as TOGA is deployed it is �xed at pre-determined locations. Additional
problems occur with drifting data buoys when they wash ashore as they may become damaged
in the process and it is unlikely that they will be returned to their owners. A sailing robot o�ers
the potential to build a large network of monitoring stations but to have them re-deployable to

7

a speci�ed location. This allows for the bene�t of a data buoy network without the need to use
a �eet of ships to deploy each buoy and anchor it or the need to recover it. A sailing robot could
potentially take on the role of both a moored buoy by attempting to hold a given position or that
of a drifting buoy by simply drifting with the currents but able to sail away from the coastline
should it drift too close. If a robot needs to be recovered it could be tasked to sail back to a port
or rendezvous point.

3.2 What kind of related system are there in production and

research at present?

There are no commercially available sailing robots at this point in time, however a number of
systems for performing similar tasks currently exist and a number of others are currently being
researched. Existing systems include data buoys, survey ships and satellites. Systems under
research include autonomous powered boats, autonomous submarines and biomimetic vehicles
as well as other attempts at building a sailing robot.

3.2.1 Systems presently available

At present there are several systems in existence for monitoring the worlds oceans. These in-
clude GOOS (Global Ocean Observing System) and GCOS (Global Climate Observing System)
which in turn are made up of many regionally organised networks such as EGOS. These systems
integrate data from a number of sensor networks including moored data buoys, �oating data
buoys, survey ships, ships of opportunity (commercial ships equipped with sensors), satellites,
tidal gauges and coastal observing stations. Between them these systems are able to gather a
wide range of data, however a number of problems exist.

Moored data buoys must be anchored to the sea bed at considerable expense and require regular
maintenance, as a result ships must visit them in order to carry out repairs. According to EGOS
[5] it costs ¿400 to deploy each data buoy, hopefully a sailing robot would be able to cut this to
nearly nothing. The TOA/TRITON network requires some 300 days of ship time each year to
recover and maintain moored buoys [4]. A sailing robot could be made to hold a given position
while gathering data and the return to port after several months for maintenance, this could
result in a dramatic reduction in deployment and maintenance costs. Data buoys have also
proven to be a problem for �sherman [7], �sh are actually attracted to the moorings and as a
result so are �sherman who often get their nets tangled in the buoys causing damage to them.
This is a problem for all involved, it means �sherman loose their nets and may expose themselves
to dangers in recovering them, the buoys become damaged in the process causing problems for
oceanographers and meteorologists and as the �sh are concentrated in a smaller space this will
have an impact on the surrounding environment.

8

Figure 3.1: Map showing locations and owners of all moored and drifting data buoys. Values in
brackets indicate the number of drifting buoys followed by the number of moored buoys. Source
Operations and Achievements of the DBCP [1]

As with moored buoys �oating buoys su�er from problems of deployment and recovery. It is
not uncommon for them to be lost at sea or to run ashore after only a few months in the
water. A sailing robot could potentially be made to drift either by pointing towards the wind or
somehow lowering its sail and/or mast while at the same time avoiding land and being able to
automatically deploy and recover themselves. Sailing robots could also be used in place of or in
addition to survey ships and ships of opportunity to perform surveys of conditions across a large
area. Although survey ships have no major restrictions as to where they can travel, they are
expensive to deploy and only a limited number exist. Ships of opportunity help to complement
this as they are far greater in numbers, according to the Met O�ce "At the end of 2000 the UK
Voluntary Observing Fleet (VOF) numbered 552 vessels" [8].

Satellite systems are currently used for a vast number of monitoring tasks including measuring
the surface temperature of the sea, wind speeds, cloud cover etc. Satellites are very good at
monitoring wide areas, but are not so well suited to take measurements under the surface and
it may still be cheaper to deploy a series of sailing robots or data buoys to detect things like
sea temperature than to launch a single satellite. To give an indication of this, data buoys
cost around ¿10,000 to build and about ¿ 400 to deploy[5] each, a satellite launch (excluding
manufacturing costs) is at least $ 8,00,000 [9] or ¿ 6,250,000 the cost of manufacturing 625 data
buoys. In addition to this, satellite launches are often delayed by months or even years and its
is not uncommon for satellites to be lost or at the very least placed in the wrong orbit.

3.3 Systems currently being researched

3.3.1 Other sailing robots

No sailing robots currently exist as o� the shelf products. The nearest available products are
remote control sailing boats, but these tend to be small and unsuitable for use in open waters.

9

There is no o� the shelf software for the control of sailing robots, although there have been
two previous attempts by academic researchers to build robotic sailing boats. These are Abril,
Salom, Calvo, 1997[10] and Ross, 1998 [11]. Unfortunately neither of these seem to have followed
up their research into a system actually capable of performing oceanographic monitoring.

3.3.2 Powered Autonomous Surface Craft

Several attempts have been made to produce autonomous surface craft (ASCs) that are driven
by electric motors, combustion engines or turbines. The obvious limitation of these is that they
must either enough carry fuel and/or batteries to power themselves or gather enough power from
the sun, wind or waves. These factors severely limit the amount of time a boat can operate for
and/or its maximum speed in comparison to that of a sailing robot. However powered ASCs also
o�er the major advantage over a sailing robot of being able to operate without su�cient winds
and at relatively high speeds even if only for a few hours at a time. A number of research projects
have been carried out in this �eld, perhaps the most notable is Vaneck (1997) [12] who built a
1.4 metre long autonomous boat guided by GPS and controlled using a fuzzy logic controller and
Goudey et al (1998) [13] who attempted to use a small kayak to autonomously track �sh in a
river. Both of these projects were part of the wider MIT Sea Grant project and were conducted
by the MIT AUV Laboratory [14]. Additional powered ASCs have been built by Ross (1998)
[11] who built a small sailing robot and a larger electrically powered boat and Rocca (1999) [15]
who built a small GPS guided boat controlled by a simple assembly language program.

Additionally remotely controlled surface craft have been used in environmental monitoring with
the Texas Coastal Observation Network (TCON) [16, 17] which is currently experimenting with
such craft to obtain water quality information in shallow estuaries. The motivation behind using
such craft is because of their exceptionally shallow draft and small size which allows them to
travel with a minimum of disruption through the exceptionally shallow waters found along the
Texas coastline. An autonomous sailing robot could be used for similar applications and could
be equipped with a similar sensor package to that of the TCON boat. The only possible problem
with using the robot used in this project is that it has a 70cm deep keel which may strike the
bottom in exceptionally shallow waters.

3.3.3 Underwater vehicles

3.3.3.1 Robotic Fish and other biomimetic systems

It has been suggested that attempting to mimic the actions of a �sh and other marine crea-
tures is an e�cient way to power and steer man made vessels, mimicking nature in this way is
generally known as biomimetics. A number of researchers have built robotic �sh these include
Triantafyllou and Triantafyllou (1995) [18] who created the RoboTuna one of the �rst robot �sh.
As mentioned by Tzeranis, Papadopoulos and Triantafyllou [19] robot �sh are currently only
capable of operating for a few hours at best and are therefore not yet suitable for performing
oceanographic functions given this limitation. Despite the e�ciency of swimming in comparison
to a propeller a robotic �sh still requires constant movement of its �ns and is unlikely to be able
to match the power e�ciency a sailing robot can potentially deliver, however it should theoreti-
cally be able to exceed that of a conventionally powered surface craft. As identi�ed by Tzeranis,
Papadopoulos and Triantafyllou [19] the possibility exists to improve the e�ciency of robotic
�sh by propelling them using Shape Metal Alloys and Electroactive Polymers both of which are
capable of changing shape from electrical stimulation, such technologies remove the need to the
translate rotary motion of traditional electric motors into the �apping motion of a �sh however
such technologies are not yet mature enough to achieve this.

10

3.3.3.2 Autonomous Submarines

A number of researches have attempted to build autonomous submarines (often called AUVs or
Autonomous Underwater Vehicles) for a variety of tasks including ocean monitoring, undersea
cable laying and mine clearance. Two notable examples of these are Southampton University's
AutoSub-1 [20]and the United States Naval Postgraduate School's ARIES AUV [21]. Both of
these AUVs are powered by onboard batteries, limiting their range to a few days operation at
best. When compared to a sailing robot AUVs are somewhat limited due to this factor, however
they have the advantage of being able to sense what is deep beneath the surface rather than
simply the top few metres of water as a sailing robot can.

3.3.3.3 Argo Floats

Argo �oats [22] are a form of drifting data buoy which are able to sink and gather information
underwater and then resurface to transmit the information they have found. They achieve this
by increasing and decreasing their volume through the use of an in�atable bladder into which
oil is pumped when the �oat wishes to surface or from which oil is withdrawn if the �oat wishes
to sink. Argo �oats have no control over their course, only their depth, they usually drift under
water for several days before surfacing.

3.3.3.4 Ocean Gliders

Ocean gliders [23] work on a similar concept to the argo �oat, however they are equipped with
wings and are able to glide upon temperature di�erentials caused ocean currents controlling their
direction with aircraft like control surfaces. As with the argo �oat the depth of the glider can
be controlled by using an in�atable bladder, ocean gliders also tend to surface every few days
both to transmit their data and to take a GPS reading in order to correct their course. They
are capable of running for several months, although they are still dependant on battery power
to change the size of their bladder and to operate their control surfaces. Both ocean gliders
and argo �oats are capable of deep sea monitoring, which a sailing robot is not. However they
are both reliant on being underwater and are not able to hold a position and are therefore not
capable of covering roles similar to a moored data buoy (or a sailing robot attempting to hold
a given position). It is possible that sailing robots and argo �oats/ocean gliders could be used
together, a large sailing robot might be able to deploy or even retrieve argo �oats and ocean
gliders reducing the need for manned ships to deploy them, thus reducing their operating costs
and/or allowing them to operate in more remote locations.

3.3.4 Autonomous Ocean Sampling Networks

Autonomous Ocean Sampling Networks (AOSNs)[24] are an attempt to integrate information
from a number of sources such as Ocean gliders, AUVs, survey vessels, satellites, data buoys and
aircraft to produce a wider picture of what is going on within the ocean. Currently research into
this area is being pioneered by MBARI, the Monterey Bay Aquarium Research Institute [25] in
conjunction with several universities in the USA. It is quite possible that sailing robots could
be used as an additional component within an AOSN to either add another data source or to
replace (or at least reduce) the role undertaken by survey vessels.

11

3.4 Are there any existing systems that can be adapted to do

this job?

At present there are no o� the shelf systems designed for the complete autonomous control of
a sailing boat, however there are auto helm systems intended to help sailors maintain a steady
course. Such systems are often used by solo yachtsmen to allow them to continue sailing while
sleeping or to advise the yachtsmen on how to adjust their course and sails in order to sail more
e�ciently. One such system is the RoboSail [26] project, which uses AI techniques to make course
corrections and wind sensors, a compass and GPS to gather data. Other systems within the boat
such as navigation, data logging, communication and steering systems are likely to be very similar
to those already found in data buoys, autonomous boats and autonomous underwater vehicles.
It is therefore likely that some of the equipment and algorithms used maybe similar.

From a wider perspective there are existing systems which can perform the oceanographic ap-
plications of a sailing robot. However, as previously mentioned these systems have a number of
shortcomings and sailing robots maybe able to overcome some of these. This may result in lower
operational costs, a more versatile oceanography platform and a system which is less likely to
become lost at sea.

There have been several research e�orts and e�orts by private individuals to produce autonomous
powered boats. Some of the control algorithms used in these could be used to control navigation
of a sailing robot, but they are not suitable to control the actual sailing logic. One such system
that may be suitable is the Roboat system by Rocca (1999) [15]. This system was developed to
allow a small electrically powered model boat to navigate around a lake for a competition run by
electronics magazine, Circuit Cellar. Another similar system is the Robotic boat for Autonomous
Fish Tracking by Goudey et al (1998) [13]. This followed a similar strategy as Rocca's system
by taking GPS readings at regular intervals and steering appropriately upon each reading.

3.5 Is there any wider demand for this product?

The main demand for a sailing robot appears to be from the oceanographic community at this
point in time. However there may also be potential uses in performing environmental monitoring
of river estuaries and inshore waters, as is being done by the remote control boats used in the
TCON network [16, 17]. There may also be applications in patrolling coastlines for smugglers
or terrorists, as well as military applications such as reconnaissance in enemy ports and mine
detection,. Such applications have already been proposed for powered boats [27], however a
sailing robot would provide an obvious platform for these applications given its ability to run
for long periods of time without refuelling or needing new batteries. Another possibility is for
performing marine biology tasks such as tracking whales and �sh via passive hydrophones.

3.6 What are the risks involved in producing, delivering, sup-

porting and using this system?

3.6.1 Risks during development

The immediate risks in developing this project are mostly related to the potential loss of the
robot during testing. Should this happen it is unlikely that another robot will be available before
the end of the project and without an appropriate backup this would leave all of the software

12

un-testable. To reduce this possibility a simulator is to be used to test the high level sailing
control algorithms, should the robot become unavailable the simulator will be able to act as an
appropriate alternative to develop these algorithms. There is also a danger that software which
works perfectly in the simulator may not work in real life due to the di�erences between the
behaviour of the simulator and the real robot. Such di�erences could occur in a number of areas
such as the robot not sailing properly at all, the wind being less predictable and consistent in
the real world and the action of currents, waves and tides upon on the boat.

3.6.2 Risks to end-users and the environment

There are also a number of risks for an end user who deploys robotic boats. The biggest �nancial
risks are most likely to concern the potential loss of a boat or several boats, this could due to
adverse weather, hardware failure, hitting land, colliding with another vessel, colliding with or
being swallowed by an animal, software errors or any combination of these. Some of these issues
are also a problem with data buoys and satellites. A large number of data buoys are lost or
damaged either by the weather or by humans, as is shown by the European Group on Ocean
Stations Report on the EGOS Management Committee Meeting [5] and by TRTION Data Buoy
Network's web site [28]. Problems with data buoys are increased as �sh are attracted to mooring
cables [7] and as a result �sherman being attracted towards the data buoys.

A potential liability issue also exists if a robotic boat causes damage to another vessel, a buoy,
�shing nets/lines/farms, wildlife etc. This would presumably follow similar liability problems
which drifting data buoys face. Liability could potentially rest with both the owner/user of the
boat as well as the programmers, hardware designers and manufacturers should a failure which
cause damage to somebody else be the result of negligence. Several such problems have already
arisen from data buoys, there have been cases of lead acid batteries producing hydrogen gas and
subsequently exploding due to electrical faults. Unfortunately in 2001 a crew member of a ship
performing buoy maintenance for the Indian National Institute for Ocean Technology was killed
when such an explosion took place [1]. Although this fault does not appear to have been caused
by software, the accident might have been prevented by the use of software which could power
down the electronics when a hydrogen leak was detected or at least send a warning message so
that the recovering crew are aware of the issue. It is likely that a sailing robot could su�er from
the same problem of hydrogen leaks from a lead-acid battery and that safety systems to detect
and/or prevent such a problem be added to any sailing robot to be used in the real world.

Similar issues have been highlighted with regards to Autonomous Underwater Vehicles and Au-
tonomous Vehicles in general. According to Showalter (2004) [29] the International Regulations
for Preventing Collisions at Sea only apply to vessels and de�nes a vessel as �includes every de-
scription of watercraft or other arti�cial contrivance used, or capable of being used, as a means
of transportation on water", therefore it is not certain that most autonomous vehicles will be
classi�ed as such as they are not capable of acting as a means of transportation. Should an
autonomous vehicle be classi�ed as a vessel then a number of implementation issues will arise as
a vessel is supposed to provide appropriate lighting (e.g. port and starboard lights), pass other
vessels with the port side of the vessels facing each other and respond to audible signals. As
these regulations where written in the 1970s autonomous vehicles were not considered. However,
if a sailing robot does not classify as a vessel then it does not need to adhere to these regulations
and given the size of the robot being built for this project it is unlikely that a collision with a
vessel of any size would actually cause the other vessel any major damage. As Showalter points
out problems also apply with regards to harm caused to animals, this especially applies to the
operation of autonomous vehicles operating within marine reserves. However, as a sailing robot
is unlikely to move at any great speed, has no propeller and does not cause any major noise

13

(unless sonars or acoustic modems are �tted to it) it is unlikely to cause any harm to animals
and the greater risk is that the animals will damage the boat.

3.6.3 Support Issues

Support problems potentially exist if a software update needs to be applied to a robot while it
is at sea. It would be theoretically possible to perform updates of software remotely, but failure
in doing this (or any other software failure resulting in a loss of communication) could cause the
loss of a robot, and thus �nancial loss to its owner. Most support issues with commercial users
of sailing robots are more likely to regard hardware problems than software problems.

3.6.4 What issues concerning intellectual property rights need to be consid-
ered in relation to this project?

There are currently no known intellectual property issues with this project. There are no known
patents covering this technology and the only 3rd party software currently being used is available
under Open Source licenses.

14

Chapter 4

Design

4.1 Hardware Architecture

The choice of hardware available to this project is rather restricted due to the limited budget
available. As a result 3 suitable computer platforms are available. These are the Basic Stamp
2sx micro controller, a Palm M100 PDA and a Psion Series 5mx PDA.

4.1.0.1 The Basic Stamp

Basic Stamp 2sx[30] is a small micro controller featuring a simplistic micro processor, 16 general
purpose I/O lines, I2C bus support, 16 kilobytes of EEPROM split into 2 kilobyte pages, 32 bytes
of RAM and an RS232 interface for connection to a PC and/or other micro controllers. The
Basic Stamp uses a variant of the BASIC programming language for writing code, this makes it
simple to program in comparison to many other micro controllers. Its I/O facilities make it ideal
for connecting to a number of control lines and sensors, however its limited processing power and
memory make it di�cult to implement complex control algorithms.

4.1.1 The Psion Series 5mx

The Psion 5mx[31] is a PDA (Personal Digital Assistant) designed to be a miniature replacement
for a laptop PC. It features a 33 mhz ARM processor, 16 megabytes of memory, 640x200 pixel
LCD screen, an RS-232 serial port and infra-red adapter for connecting to other devices and a
compact �ash slot allowing for storage to non-volatile memory. By default the Psion 5mx runs
the EPOC operating system from its internal ROM, however it is also possible to boot other
operating systems such as Linux or NetBSD from a compact �ash card. The Psion's small size,
(relatively) fast processor/large memory and support for non-volatile compact �ash make it an
ideal choice for implementing higher level control algorithms which require more memory and
computing power than a micro controller can o�er. However the Psion alone does not make a
suitable controller as it only has two I/O devices, a serial port and an infra-red port. This makes
it di�cult to connect the Psion to more than two other pieces of hardware, thus it needs to be
connected to some other device (such as a Basic Stamp) in order to be useful for controlling a
sailing robot.

4.1.2 The Palm M100

The Palm M100[32] is a PDA designed to act as a powerful pocket organiser and features a 16mhz
Motorola Dragonball processor, 2 megabytes of RAM, a 160x160 pixel LCD screen, an RS232

15

serial interface, an infra-red port and a ROM containing the PalmOS operating system. At this
point in time the Palm is not capable of running alternative operating systems, however PalmOS
programming tools are readily available as is programmer documentation. Like the Psion 5, the
Palm alone is not suitable for controlling an entire robot as it only has a serial port and an
infra-red port with which to interface to other hardware. Unlike the Psion, the Palm features no
way of storing non-volatile data as it has no support for �ash memory cards and relies solely on
keeping power running through its RAM to store data.

4.1.3 Choice of Hardware

The �nal choice of hardware is to use a Psion 5mx in conjunction with a Basic Stamp 2sx. This
combination allows for the Psion's I/O limitations to be overcome by passing requests over an
RS232 cable to the Basic Stamp. It also allows for the memory and processing limitations of
the Basic Stamp to be overcome by using the Psion to perform any CPU and memory intensive
operations. The Psion's ability to use compact �ash cards allows for signi�cant amounts data to
be logged and should the power fail no data will be lost. Compact �ash cards also allow for the
use of Linux or NetBSD operating systems instead of the default EPOC, the advantages of this
will be discussed in the next section.

One additional possibility for the Psion is that its infra-red communications facilities can be used
to allow recon�guration of the sailing algorithms, without having to physically access the Psion.
As the deck of the robot is clear perspex it should be possible to use infra-red communication
between the Psion inside the robot and another device supporting infra-red communication such
as another PDA or a Laptop. This will speed up testing time as there is no need to disassemble
the robot in order to change parameters on the Psion. The most obvious way to implement this
system is to attach a console to the infra-red port under Linux, this will allow a remote user to
work as if they were typing directly on the Psion, allowing them to edit con�guration parameters,
reboot the system and restart the control programs. Unfortunately infra-red communication will
only work at very short range (probably no more than 1 metre) and only with line-of-sight to
the client system. Ideally such a system could be replaced by a longer range radio link such as
Bluetooth or 802.11 wireless link, however the Psion has no built-in support for such systems.

If su�cient funds were/are made available to this project then a more suitable microcontroller
could be used. Ideally such a microcontroller would combine the processing power and storage
capabilities of the Psion with the diverse I/O facilities of the Basic Stamp. One micro-controller
system which ful�lls this potential is the Strong ARM 1100, this actually a successor to the
ARM7 processor used in the Psion. The Strong ARM 1100 includes a 200MHZ ARM processor
as well as controllers for a number of common peripherals including LCD screens, serial ports,
USB ports and PCMCIA cards. The Strong ARM 1100 is commonly used in a number of
microcontroller boards such as the LART or Linux Advanced Radio Terminal, it has also been
used in several PDAs including the Compaq IPAQ, HP Jornada 7xx Series and Sharp Zaurus.
At the other end of the scale, simpler microcontrollers such as the Motorola 68HC11 may also
be suitable, however these are not capable of running an operating system as sophisticated as
Linux and would require some changes to the current code.

4.2 Software Environment Choices

4.2.1 Available Operating Systems

Three possible operating systems can be used on the Psion Series 5mx. These are Symbian
EPOC which is included in the ROM of the Psion, NetBSD [33] a highly portable Unix system

16

based around the BSD core and Linux[34] a popular Unix clone.

EPOC is mainly intended for the development of graphically driven applications and development
must be done via either an extensive SDK, which requires the use of Microsoft Visual C++.
Development can also be done using a BASIC like language called OPL which comes bundled
with the Psion, however OPL is rather limited in its features. Development via the EPOC SDK
or via OPL will also restrict the portability of any code, as the resulting code will only run on
EPOC machines which are currently limited to Psion PDAs and a few mobile phones.

NetBSD [33] is intended to be a highly portable general purpose operating system and has been
ported to 18 di�erent microprocessor architectures. It is possible to cram a NetBSD installation
into a few megabytes, making it ideal for use on a small scale device such as a Psion 5mx. Given
this information NetBSD sounds like an ideal choice, unfortunately the current port to the Psion
5mx receives little attention and a number of issues still remain, preventing it being a usable
operating system.

Linux was originally intended to only run on desktop PCs with Intel 80386 compatible CPUs,
however since the mid 1990s it has been ported to a variety of architectures including the ARM
CPUs which the Psion 5mx uses. As with NetBSD it is possible to reduce a Linux installation
to a few megabytes, making it ideal for use on the Psion 5mx. There currently exists an active
community supporting Linux on Psion PDAs, this centres around the OpenPsion project[35]
which hosts kernels speci�c to Psion systems. Programming with Linux allows for the control
software to be ported to any other system which can run a POSIX compliant operating system
(such as NetBSD or any other Unix, QNX or VxWorks) by simply recompiling the source code
for that platform.

4.2.2 Cross-compilation Environments

In order to compile code for a Psion 5mx it is easiest to compile it using a desktop PC equipped
with a specialist compiler to produce executables for another platform, these are known as cross
compilers. The popular and freely available GCC C compiler can be rebuilt to cross-compile,
however con�guring this from scratch is not an easy task. A number of utilities exist to ease this
con�guration, these include CrossTool [36], a script for setting up a cross-compile environment.
Initial experiments with CrossTool proved unpromising and a number of errors were encountered.
An alternative system, called uClibc Buildroot [37] was found. uClibc buildroot is capable of
building a full embedded linux system, allowing the user to choose what components are included.
The uClibc buildroot includes the uClibc C library, a cut down version of the full GNU Standard
C Library and Busybox, a single executable which replaces all the standard Unix commands.
uClibc is exceptionally easy to con�gure, simply downloading the source and typing "make"
presents a con�guration menu and then builds all required tools (including the cross compiler)
and a complete image �le of a Linux system. The resulting image �le is usually no more than
two megabytes, which is ideal for installation to a compact �ash card on a Psion 5mx. Given
this ease of use and small size of resulting executables uClibc is the most obvious choice for a
cross compile environment.

4.3 Overall Software design

The system needs to be split into 4 main areas. The �rst is the micro-controller code which
runs on the Basic Stamp and interacts directly with the sensors and servos of the robot. It

17

also communicates with the next level via the Basic Stamp's serial port. The second area is
the medium level code running on the Psion, this interacts directly with the stamp and creates
an API for higher level components to use to read from sensors and control servos. It is also
responsible for performing conversion of values, so that the voltage or time values given to/by
the servos and sensors are in suitable units (e.g. That a compass heading is in degrees). The
third area is the high level control algorithm which is actually responsible for making decisions
for steering the boat and setting the sail appropriately. It should perform these operations by
communicating with the low level code. The fourth area is a simulator which can take the place
of the low level code and allow the high level control algorithms to think that they are controlling
the real boat.

Figure 4.1: The di�erent layers of the software architecture. The high level code may interface
either to the simulator or to the real robot.

4.3.1 Detailed design of the micro-controller code

The lowest level of the code will run on a Basic Stamp micro-controller and be able to directly
interface with the sensors and servos using the Basic Stamp's I/O facilities. This code is to
be largely based upon code supplied by Dr. Mark Neal. Apart from actually sending data
to/from the sensors and servos this code must also interface with the Psion via the Basic Stamp's
serial port. In order to do this a common protocol must be used on both devices, given the
Basic Stamp's limited memory and processing power this protocol needs to incredibly simple to
implement.

The code on the Basic Stamp must be able to handle requests to read values from the compass
and wind sensor. It is also desirable for it to be able to read the sail position, although this isn't
absolutely required as the previous value the sail was set to can be used. It must also be possible
to set the position of the sail and rudder. Table 1 shows the value range. As a result of di�ering
value ranges, di�erent amounts of memory will be required for some values and this will require
more bytes to be transmitted over the serial line. The medium level code must also be able to
handle this.

18

Sensor/Servo Name Set or Get Value Range
Rudder both 0-255
Sail both 0-160
Compass get 0-220
Wind sensor get 0-65535

Table 4.1: The value range for each of the variables handled by the Basic Stamp.

In addition to the compass, wind sensor, sail and rudder the Basic Stamp should have the
�exibility to handle other pieces of hardware. The two devices most likely to be added to the
boat are a GPS receiver and a radio link. GPS receivers typically work by generating 10 or more
character NMEA strings, which state the current longitude/latitude and optionally the time and
altitude. As a result of this there is a requirement for the protocol that communicates with the
Psion to handle message parameters of at least 10 characters.

Calibration of any values sent to/from the hardware is done in the middle layer code running on
the Psion rather than in low level code on the Basic Stamp. However there is scope for the Basic
Stamp to perform some simple tasks with the data such as taking an average over several sensor
readings rather than supplying a single reading to the Psion when gathering data from sensors.

4.3.2 Implementation Platform

As most of the development tools and example code for the Basic Stamp centre around the
custom version of the BASIC programming language used in the Basic Stamp this seems an
obvious choice for implementing all Basic Stamp code in. The resulting programs are likely to
be no more than 200 lines so the shortcomings of the BASIC language (e.g. Goto statements,
poor parameter handling in subroutines etc) should not be a major problem.

4.3.3 Serial Protocol Design

The serial protocol used between the Psion and the Basic Stamp must be capable of get-
ting/setting all the variables stated in Table 4.1. The communications protocol shall work by
sending 3 bytes to make up each command, followed by up to another byte to specify any
operands. The �rst character of each command sent to the stamp will be either �G� for get com-
mands, �S� for set commands. The next 2 characters determine what device is being requested,
these values will be �CH� for compass heading, �WS� for wind direction, �RD� for rudder position
and �SL� for sail position. The return data will then be up to 10 bytes in length, set commands
will simply reply with the string �!!!!!!!!!!� and get commands will reply with the value read from
the sensor, replies will be encoded as raw bytes rather than character strings (e.g. a value of zero
sends a value of zero not the ASCII character for zero.) Full details are shown in table 4.2.

19

Command Description Parameters Returns
GCH Gets Com-

pass head-
ing

None Result of PWMmeasurements
from the compass.

SSL Sets sail po-
sition

Sail position , as a poten-
tiometer value to match.

Nothing

GSL Gets sail
position

None The sail position as a poten-
tiometer value.

GWS Gets wind
direction

None Returns the wind direction as
a potentiometer value.

SRD Sets rudder
direction

Rudder direction as a poten-
tiometer value.

Nothing

GRD Gets rudder
direction

None Rudder direction as a poten-
tiometer value.

SUW Turns
the sail
counter-
clockwise to
unwind the
wire to the
wind sensor
should it
become
wrapped
around the
mast.

None None

Table 4.2: The protocol used for communication between the Psion and the Basic Stamp. This
is based upon a protocol originally designed for this system by Dr. Mark Neal, see original
speci�cation in Appendix C.

4.4 Detailed design of medium level code

The medium layer code runs on the Psion and is responsible for providing a TCP/IP socket
interface to allow the high level code access to the servos and sensors, making use of calibration
data to translate between real world measurements such as degrees and measurements understood
by the low level code such as Pulse Width Modulation timings and Potentiometer values and
�nally it must interface with the Basic Stamp via an RS-232 serial line and forward on commands
which it receives over TCP/IP to the Basic Stamp. The use of a TCP/IP interface to the high
level code allows for the high level code to potentially run on a di�erent computer should a
distributed architecture be required and it also allows the high level code to run as a separate
process and even be written in a di�erent language to the medium level code. This is especially
useful as languages often suited to the development of lower level I/O routines (e.g. C) are not
as well suited to implementing very high level algorithms and languages suited to very high level
development (e.g. Prolog, Java, Lisp) are often not very suited to lower level development.

4.4.1 Implementation Platform

The medium level code is to be implemented in ANSI and POSIX compliant C code. This allows
for portability to any POSIX compliant operating system including most versions of Unix, Linux,

20

QNX and VxWorks simply by recompiling the code for the relevant platform. Dependencies on
specialist libraries are to be kept to a minimum, the only external calls needed should be to
perform serial I/O and TCP/IP socket operations.

4.4.2 The TCP/IP Interface

The commands used over the TCP/IP bear a very similar resemblance to those used over the
serial line to the Basic Stamp. However there are a few di�erences, �rstly all commands work
in real world units such as degrees, secondly the command format is more verbose using strings
like �get compass� rather than �gch� and �nally there are no update commands, calling the get
command will result in the appropriate update commands being issued to the basic stamp as
well as the get command. Table 4.3 shows a full description of commands available over the
TCP/IP interface.

21

Command Description Parameters Returns
Get com-
pass

Gets the compass head-
ing.

None The compass heading in
degrees.

Get wind Gets the wind direction. None The wind direction in
degrees, relative to the
boat.

Get sail Gets the sail direction. None The sail direction in de-
grees.

get rudder Gets the rudder direc-
tion.

None The rudder direction in
Degrees.

get nor-
thing

Gets the number of de-
grees north or Y co-
ordinate for simulator.

None The number of degrees
north or a negative
value if south of the
equator. If using the
simulator the Y co-
ordinate, which will be
positive if above the ori-
gin and negative if be-
low.

get easting Gets the number of de-
grees east or the X co-
ordiante for the simula-
tor.

None The number of degrees
east or a negative value
if west of the Green-
wich meridian. If us-
ing the simulator the X
co-ordinate, which will
be positive if right of
the origin and negative
if left of it.

Set rudder Sets the rudder direc-
tion.

The rudder direction in
degrees.

None

Set sail Sets the sail direction. The sail direction in de-
grees.

None

Set unwind Turns the sail counter-
clockwise several times
in order to un-wind the
wire connecting to the
wind sensor.

None None

Table 4.3: The commands available over the TCP/IP interface.

It should be noted a simplistic TCP/IP interface has been chosen instead of using an existing
RPC mechanism such as CORBA/IIOP due to the simplicity of implementing such a protocol
from scratch rather than using an existing one and the reduced overheads of a custom design
rather than trying to �t into an existing complex RPC mechanism. It should also be noted that
although the protocol shown in table 4.3 includes support for a GPS there is no support for this
in the protocol shown in table 4.2 as there is no GPS receiver connected to the Basic Stamp.
Support is only included in the TCP/IP protocol to allow for logging of X and Y co-ordinates
in the simulator and for future support of GPS hardware.

22

4.4.2.1 Error Handling in the TCP/IP Interface.

Unlike the low level code running on the basic stamp, the medium level code performs validation
of the commands it is sent and will return a response beginning with �ERROR� if an error occurs.
The word �ERROR� will be followed by an error code and a textual description of the error, the
error codes are there to ease error parsing by the high level code. A full list of error codes is
shown in table 4.4.
Error String Meaning
�ERROR-1: Value out of range� The requested value is too high or too low

for this command (set commands only).
�ERROR-2: Invalid Mode� The command did not begin with get or

set
�ERROR-3: Communication Error� The basic stamp is not responding.
�ERROR-4: Missing or invalid command� Get or Set were not followed with a valid

command.
�ERROR-5: Missing parameter� This command required a parameter and

none was sent.
�ERROR-6: Invalid parameter� The supplied parameter is invalid, this

might be because its not a number, is too
long or is too short.

Table 4.4: Error codes and their meanings.

4.4.3 Using the calibration data

As the medium level code must translate between real world data and the values understood by
the sensors and servos a conversion of some form must take place. As each sensor/servo has been
calibrated �ve times by recording its real world value against the value understood by the sensor
or servo, this data can be used to perform a conversion from one data type to another. There are
two possible strategies that could be used to perform these conversions, the �rst is to generate a
mathematical function based upon the calibration data using a statistical analysis technique such
as a least squares regression or a reduction to linear form followed by a least squares regression.
It is possible to perform such analysis using most modern spreadsheets and there are also plenty
of freely available libraries which do this. The other method is to simply store all the data in
a lookup table and have the code use the nearest viable value. This method does not allow
for any extrapolation of data between data points, and may limit the accuracy and resolution
to which values can be speci�ed. However given that most of the hardware components in the
robot are not accurate to less than 5 degrees this isn't likely to be noticeable. The advantages
of this method are that the data �le can be changed and thus the behaviour of the program can
be changed without the need to recompile, using the mathematical function approach it is likely
that this function would be hard-coded and a recompile necessary if the function changed. The
other advantage is that the algorithms to perform a lookup are exceptionally simple and easy
to implement. For these reasons this method has been chosen over the mathematical function
method, the data tables used are to be based upon the median values from the calibration data.
One major problem with this method is that it is unlikely to be suitable on its own for using the
compass data, as calibrating the compass requires moving the boat around to each heading and
then reading the value from a real compass it is unlikely that intervals of less than 45 degrees
are practical, thus it may be necessary to produce a data table for the compass which involves

23

Figure 4.2: Two screenshots of tracksail, on the left the boat is sailing almost into the wind and
the sail is only able to go out a small amount despite the slider being set to full. On the right
the wind is almost directly behind the boat and the sail is out as far as possible.

the use of interpolated data, as it would be useful to be able to read the compass at a resolution
of �ve degrees rather than 45 degrees.

4.5 The Simulator

As there is a high chance of the robot failing (e.g. Sinking) at an early stage in this project
and testing time will be very limited, a simulator is required to allow for testing of the control
algorithms. The only suitable application which could be found was an open source multi-player
game written in Java called Tracksail [38]. Tracksail works using a client-server architecture
and it should be possible to replace the client with code which implements the same TCP/IP
interface as the medium level robot code does. This would make the simulator appear to be the
same as the real robot to the high level control algorithms.

There are bound to be some areas where the behaviour of a simulator will di�er from real life
(as is the case with all simulators) and in many cases there will be little that can be done about
this. However there are some areas where tracksail's behaviour clearly di�ers signi�cantly from
that of the robot. One such problem is that tracksail automatically limits the maximum angle
of the sail depending on the wind direction relative to the boat whereas the robot allows the sail
to be placed at any position regardless of wind direction. Tracksail also moves the sail whenever
the wind direction and/or course of the boat changes, this is not an unreasonable action as this
is what happens to a normal sailing boat. The sail is also set to a value between 0 and 100
using a graphical slider and this is then mapped to a sail angle which is dependent on the wind
direction relative to the boat, �gure 4.2 illustrates this. In the actual robot the sail behaves rather
di�erently, as it is a solid metal sail being moved by a servo (traditionally sails have to be pushed
into place by the wind) it is possible to move the sail to almost any setting regardless of the wind
direction, although doing so may cause the boat to alter its course. Mapping this behaviour onto
tracksail is not possible without a major rewrite of the code, therefore a compromise has been
taken. Tracksail will take a desired angle for the sail from the client code, if this angle is within
a range that it could currently meet then that angle is used. For example if the boat has the
wind behind and slightly to the left of it then the sail could be anywhere from 180 to 90 degrees
in relation to the boat, so tracksail will set the sail to any angle requested in the 90-180 range.
However if an angle is speci�ed outside this range the nearest possible angle (180 or 90 in this
case) will be taken. Should the boat be sailing closer to the wind then this range will be much
smaller.

24

Algorithm 1 Pseudo code for the sail setting algorithm supplied in tracksail.
FUNCTION sail_angle(VAR wind_direction)

/*wind_direction is the absolute direction of the wind

direction is the current heading of the boat

sail_value represents the sail setting between 0 and 100*/

/*calculate the angle of the sail if the sail is let out fully*/

sail_dir = (wind_direction-direction+360) MOD 360

//convert the current 0-100 setting to an angle between 0 and 90

restrict_angle = 90 * sail_value / 100

//calculate positions for the sail on left and right tacs

k1 = (180 - restrict_angle + 360) MOD 360

k2 = (180 + restrict_angle) MOD 360

//choose between k1 and k2

IF sail_dir < k1 THEN

sail_dir = k1

ENDIF

IF sail_dir < k2 THEN

sail_dir = k2

ENDIF

//return the sail setting

RETURN sail_dir + direction

4.5.1 Simulator Modes

Two di�erent modes of operation have been created for the simulator. The �rst of these is known
as "Perfect Mode", in this mode the wind is consistent and the boat will not deviate from its
course without an explicit command telling it to do so. The other mode known as "realistic
mode" which attempts to simulate more realistic conditions, in this mode the wind will vary
in both direction and strength at random and the boat's heading will change at random from
time to time. The reason for having these two separate modes is to �rst develop an algorithm
which will behave properly under perfect mode without having to deal with any noise from wind
or course variations. This helps to show that the algorithm is behaving correctly and that any
unexplained actions are not the result of random events which have been introduced to add
realism. Once an algorithm is behaving correctly under perfect mode it can then be tested under
realistic mode to show that it is capable of coping with variations in the environment. Hopefully
any algorithm which behaves correctly under realistic mode will also behave correctly in the real
world.

4.5.1.1 Simulator Sail Setting Algorithm Design

As previously mentioned in section 4.5 tracksail sets the sail via a slider which produces values
between 0 and 100. The exact mapping of these values to angles depends on the current wind
direction and heading of the simulated boat. In order to allow the sail position to be speci�ed as
an angle (as is done in the actual robot) this algorithm must be reversed. Algorithm 1 shows the
pseudo code for the algorithm which translates slider values into angles and algorithm 2 shows
the reversed algorithm used to convert angles supplied over the TCP/IP interface to values which
can be used by tracksail.

25

Algorithm 2 Pseudo code for the sail setting algorithm used to take the value supplied over
TCP/IP and apply it to tracksail.

/*desired_direcction is the angle we wish to place the sail at, it may not be

possible to achieve this angle*/

/*limit the requested angle to between 270, 0 and 90*/

IF desired_direction > 90 AND desired_direction <= 180 THEN

desired_direction = 90

ELSEIF desired_direction > 180 AND desired_direction < 270 THEN

desired_direction = 270

ENDIF

/*convert from tracksail style angles*/

desired_direction = convertCoords(desired_direction)

wind = getWindDirection()

heading = getHeading()

/*get the maximum angle the sail can be set to*/

sail_dir = (wind - heading + 360) MOD 360

new_sail_dir = sail_dir

IF sail_dir < 90 THEN

new_sail_dir = 90

ENDIF

IF sail_dir < 270 THEN

new_sail_dir = 270

ENDIF

/*we have now determined the maximum angle the sail can take*/

max = new_sail_dir

new_sail_dir = sail_dir

IF sail_dir < 180 THEN

new_sail_dir = 180

ENDIF

min = new_sail_dir

/*max should always be more than min select the appropriate one depending on

the desired direction*/

IF max<min THEN

IF desired_direction < max THEN

desired_direction = max

ELSEIF desired_direction > min THEN

desired_direction = min

ENDIF

ELSE

IF desired_direction > max THEN

desired_direction = max

ELSEIF desired_direction < min THEN

desired_direction = min

ENDIF

ENDIF

/*now we must scale our chosen angle to between 0 and 100 and set the sail to

this as this is system used internally by tracksail*/

range = max - min

value = (desired_direction - min)/range*100

setSail (value)

26

Algorithm 3 Pseudo code for the modi�ed simulator rudder algorithm.
/*global variable to represent the rudder angle*/

INTEGER rudder_angle

/*Takes a rudder angle between 270,0 and 90.

0 being centred, 270 being fully left and 90 being fully right*/

FUNCTION setRudder(INTEGER rotate_angle)

IF rotate_angle >= 270 THEN

//change the angle to something between 0 and -90

rudder_angle = (360 - rotate_angle) * -1

ELSE IF rotate_angle >=0 AND rotate_angle <= 90 THEN

rudder_angle = rotate_angle

END IF

END FUNCTION

FUNCTION rotate(INTEGER rotate_angle)

/*modify the heading variable (part of tracksail) by rotate_angle

this will be either a positive or negative value

add 360 to prevent problems with values below 0, mod by 360

to limit output to between 0 and 360*/

HEADING = (360 + HEADING + rotate_angle) MOD 360

END FUNCTION

/*thread to constantly monitor the rudder_angle variable and perform

appropriate rotation*/

THREAD performRotation

WHILE true

rotate(rudder_angle/100)

/*wait 1 second*/

sleep(1000)

END WHILE

END THREAD

4.5.1.2 Simulator Rudder Setting Algorithm Design

Tracksail by default allows the user to steer the boat by pressing on a turn left or turn right
button, these will add or subtract 10 degrees from the heading. This behaviour is rather dis-
similar to the robot where the rudder is placed in a position and held there until the desired
heading is achieved at which point it is centred again. Therefore the simulator must be adapted
to behave in this manner. In order to achieve this the simulated boat must continue to rotate as
long as the rudder is turned, this can be simulated by constantly making small turns with a small
wait in between each turn. There needs to be some kind of delay in between each rotation and
the magnitude of this rotation needs to be in proportion to the rudder setting.As this rotation
needs to constantly occur it must run in a separate thread of execution or be called regularly as
part of the main program loop. The pseudo code for this algorithm is shown in algorithm 3.

27

4.6 Design of the high level code

There are a number of di�erent algorithms which could be used for the high level control system,
possibilities include fuzzy logic controllers, PID controllers, neural networks and genetic algo-
rithms just to name a few. Fuzzy logic controllers have been used successfully by Abril, Salom
and Calvo (1997) [10] in their sailing robot and by Vaneck (1997) [12] in his powered autonomous
boat and therefore would seem a logical choice given this success in similar applications. Abril,
Salom and Calvo also conclude that their fuzzy logic controller o�ers similar performance to that
of a PID controller therefore implying that a PID controller is also a worthy system for such a
tasks. Given this it was decided to implement both a PID and fuzzy logic controller and to com-
pare their e�ectiveness in controlling a sailing robot. This presents the scienti�c question �Which
is more e�ective in controlling a sailing robot, Fuzzy logic controllers or PID controllers?�.

4.6.1 Implementation Platform

The implementation platform for the high level algorithms needs to be one which is suitable
for writing arti�cial intelligence code and at representing data structures and mathematical
operations. It also needs to support TCP/IP sockets for communication with the lower level code.
C could be said to ful�l these requirements although handling data structures in C can at times
be confusing in comparison to other languages with dynamic memory allocation and garbage
collection (such as Java). These problems could lead to memory leaks, ultimately crashing the
system during pro-longed use. The problem with using Java is that as it relies on a byte code
interpreter, which will impact performance signi�cantly especially on the slow processor featured
in the Psion 5mx. In order to use Java there must also be a working byte code interpreter for
the hardware platform/operating system, an attempt was made to compile the Ka�e Java VM
to run on the Psion, unfortunately this was not successful and it was decided to implement the
arti�cial intelligence code in C.

4.6.2 Sailing Algorithms

4.6.2.1 Sailing Theory

In order to design algorithms for controlling a sailing robot it is �rst necessary to look at the
general rules behind sailing a conventional sailing vessel. Figure 4.3 shows what are known as
points of sail, these are the positions taken by the sail given a certain wind direction. In order
to sail with the wind directly behind the boat, the sail is allowed to run out as far as it can so
that the sail's angle is perpendicular to the wind direction, this is known as running. The next
point of sail is known as a broad reach and occurs when the wind comes from about halfway
between the back of the boat and the side (angles of approximately 135 or 225 degrees), on this
point of sail the angle between the centre of the boat and the sail will be in the region of 70 to
80 degrees. Should the wind direction be perpendicular to the boat's course the sail should be
approximately half way out or at an angle of 45 degrees between it and the centre of the boat,
this is known as a beam reach and is generally the most e�cient point of sail to use. If the wind
is coming over the front of the boat at an angle of up to 45/315 degrees then the sail should be
pulled in as far as possible so that it is nearly in line with the centre of the boat, this is known
as sailing close hauled or beating. In order to sail towards the direction of the wind the boat
must zig-zag (also known as tacking) across the wind with no more than 45 1 degrees between
the direction of travel and the wind direction. Should the di�erence be less than 45 degrees then

1The value of 45 degrees is generally used in sailing manuals, although the reality can be di�erent depending
on the boat itself. The software needs allow this value to be selected by the user.

28

Figure 4.3: Diagram showing the di�erent points of sail. Source: Sailing and the Tech Dinghy
[2]

the boat will stop sailing properly and is said to be �in irons� or �lu�ng�, this is sometimes done
deliberately as a means of stopping the boat. For all points of sail other than a run the sail needs
to be out on the opposite side of the boat to the direction the wind is coming from.

4.6.2.2 The Tacking Algorithm

Both the PID and fuzzy logic algorithms are based around the same basic concept. The algo-
rithm will be responsible for positioning the boat to its desired heading by setting the rudder
appropriately until that heading is achieved, once the heading is achieved the rudder must be
straightened and the sails set according to the direction the wind is coming from. Should the de-
sired heading be within 45 degrees of the wind direction then the boat needs to sail at 45 degrees
+/- the wind direction, as it is not possible for it to sail any closer to the wind. As this means
the boat is no longer travelling towards its desired heading it must alternate between the wind
direction +/- 45 degrees, this process is known as tacking. This can be achieved by comparing
the desired heading with the wind direction, if tacking is necessary then the desired heading must
be adjusted to either +/- 45 degrees and this value must alternate on a regular basis to ensure
the boat still travels in the desired direction. The algorithm must also take account of how long
should be spent on each tack, if the desired heading is exactly the direction the wind is coming
from then an equal amount of time should be spent on each tack however if the desired heading
happens to be 40 degrees beyond the wind direction then more time must be spent on one tack
than the other. A pseudo-code algorithm for doing this is outlined in algorithm 4 and a diagram
illustrating the problem is shown in �gure 4.4.

29

Algorithm 4 Pseudo code algorithm for handling tacking.
/*function takes the desired course and the current wind direction

as parameters, returns the course which should be sailed*/

function(integer desired_heading , integer wind_dir)

/*variables to represent the range of headings where we must tack*/
lower_limit = ((wind_dir - 45) + 360) % 360
upper_limit = ((wind_dir + 45) + 360) % 360

/*test if the desired course is in that range*/
IF upper_limit > lower_limit

IF desired_heading > lower_limit and desired_heading < upper_limit
tacking=true

ENDIF
ELSE

/*the upper limit is less than the lower limit
e.g. if upper limit = 5 and lower limit = 275*/
IF desired_heading > lower_limit or desired_heading < upper_limit

tacking=true
time_on_tack = current_time

ENDIF

ENDIF

IF tacking = true

/*calculate how long to spend on each tack*/

difference = desired_heading - lower_limit

upper_time = difference/45 * tack_length

lower_time = (90-difference)/45 * tack_length

/*calculate elapsed time on this tack*/

time_on_tack = current_time - start_time

/*test if its time to switch tack*/
IF using_upper_tack

IF time_on_tack >= upper_time

time_on_tack = 0

start_time = current_time

using_upper_tack = false

ENDIF
return upper_limit

ELSE

IF time_on_tack >= lower_time

time_on_tack = 0

start_time = current_time

using_upper_tack = true

ENDIF
return lower_limit

ENDIF

ENDIF

30

Figure 4.4: Diagram illustrating the situations that the tacking algorithm must deal with.

4.6.3 The PID Controller

A PID controller is a commonly used method in control systems and makes use of the errors
observed in a system in order to perform corrections, in the case of the sailing robot this will
be in terms of the boat's desired heading and desired sail position. The error is determined by
the di�erence between the current heading and the desired heading or the di�erence between
the current sail position and the desired sail position. A PID controller is made up of three
parts known as bands, these are known as the Proportional, Derivative and Integral bands. The
Proportional band, as its name suggests makes corrections in proportion to the size of the error,
this alone is enough to control many systems however it may encounter problems that as it nears
its destination that the force applied is so low that the desired course is never quite achieved
(known as the steady state problem) or it may oscillate around the desired level. Integral control
takes the sum of all errors and multiplies them by the amount of time elapsed, in doing this the
steady state problem can be overcome as eventually the integral control will cause enough of a
correcting force to be applied to hit the desired course. Finally derivative control acts as a form
of break to prevent the rate of change occurring too quickly and thus overshooting the desired
course, this is determined by measuring the rate of change in the error. The �nal value of a PID
controller is calculated by multiplying the output of each band by a pre-determined constant

31

known as the gain and then taking the sum of all of the three bands. The gain constants are
dependant upon the system and a PID controller must be tuned in order to �nd optimal settings
for the gain constants. A general equation for a PID controller is shown in �gure 4.5 and Pseudo
code is shown in algorithm5.

Output = KpE + KiΣ(EΛt) + KdΛE
ΛT

Kp is the proportional gain
Ki is the integral gain
Kd is the derivative gain
E is the current error

Σ(E∆t)is the sum of all past errors (the integral of the error)
∆E
∆t is the rate at which the error is changing (the di�erential of the error)

Figure 4.5: General equation for a PID controller source Modern Control Technology page 381
[3].

Algorithm 5 Pseudo code algorithm for a PID controller.
/*setup the timer for the integral band*/

previous_time = current_time

/*setup previous error*/

previous_error = 0

WHILE true

/*calculate the proportional band*/

proportional = error * prop_gain

/*integral band*/

time_diff = current_time - previous_time

previous_time = current_time

integral = (error_sum + (time_diff * error)) * integral_gain

/*derivative band*/

derivative = (error - previous_error) * derivative_gain

/*increase the error_sum*/

error_sum = error_sum + error

output = proportional + integral + derivative

set_course(output)

END WHILE

32

4.6.4 Fuzzy Logic Design

4.6.4.1 Fuzzy Logic Controller background

Fuzzy logic is based on the principle of approximate reasoning and attempts to follow a system
similar to that followed by humans where every decision is based upon things being approximately
correct given the action performed. This is the antithesis of many computer based systems which
work by very exact rules with clear-cut boundaries. Fuzzy logic controllers are based on the
principle of fuzzy sets which are similar to a traditional sets aside from one major di�erence,
each member or potential member of the set is given a probability to express the extent to which
they belong to the set, this probability is de�ned by a membership function for each set. An
example of such a set might be to determine if a given heading is to the left of another heading,
if there is only a few degrees di�erence then the probability of membership will be quite low
whereas if the di�erence is 90 degrees then the probability of membership will be very high. In
this example the membership function might be a linear equation where 90 degrees corresponds
to a probability of 1 and zero degrees corresponds to a probability of 0.

In order to use fuzzy sets to produce a fuzzy logic controller, inference rules are devised which
link membership of one set to another. These rules are written using natural language and
contain phrases such as �if desired heading is to the left then turn the rudder left�. In order to
give an output which can be used in a control system (such as the number of degrees to turn a
rudder) the probability of membership for the �rst set is calculated from an input value (in this
example the number of degrees left the desired heading is), this process is known as fuzzi�cation.
Usually there are several input sets and the probability of membership for each of these will be
calculated. Once the probabilities of membership for the input sets are determined the input
rules are matched to a corresponding output set, in the example this will be that membership
of the heading to the left set implies membership of the turn rudder left set. The probability
of membership for the input sets is then applied to the corresponding output set and from this
the value which has that probability of membership can be identi�ed, this process is known as
defuzzi�cation. Going back to the rudder example, if the probability of membership for the input
set were 0.5 then the value who's probability is also 0.5 on the output set is located, this maybe
70 degrees therefore linking being 45 degrees o� heading to needing to turn the rudder to 70
degrees.

4.6.4.2 Fuzzy logic code design

In order to implement a fuzzy logic controller in a computer some system must be designed for
representing set membership information and performing inferences. One obvious approach is
to determine the membership functions for each set and then implement these in code however
this presents the problem that the code must be altered and recompiled every time a change is
required to be made, this maybe somewhat di�cult to perform when actually testing a sailing
robot. Another approach would be to represent the membership functions in a �le which could
be edited thus preventing the need to recompile in order to reprogram the fuzzy logic controller.
The membership function could be represented either as a data table or as some kind of equation
description which must then be interpreted by the code, if it could be guaranteed that only linear
equations would be used then this could simply be the gradient and intercept of a linear equation.
It was decided the most appropriate system to use was the data table method as this presented
the fewest coding challenges, is similar to the calibration system speci�ed in section 4.4.3 and
�nally as it allows for the set speci�cation to be changed without recompilation and at the same
time does not restrict sit membership functions to being linear. The most obvious format for
these tables are to list probabilities in one column and the corresponding values in another.

33

Usually probabilities are speci�ed between 0 and 1, however as �oating point calculations add
complexity and must be performed in software on many microcontrollers it makes more sense to
represent probabilities as integers between 0 and 100.

4.6.4.3 Fuzzy Logic for rudder control

The rudder control logic has three possible outputs: turning left, going straight ahead or turning
right. There are also three corresponding inputs which represent the current heading deviation,
they are: too far left, on course and too far right. The inference rules are shown in algorithm 6.

Algorithm 6 Fuzzy inference rules for rudder control.
IF too far left THEN turn right

IF on course THEN straighten rudder

IF too far right THEN turn left

4.6.4.4 Fuzzy Logic for sail control

The sail setting algorithm needs to follow rules which link wind directions to points of sail similar
to those shown in �gure 4.3. The algorithm needs to take the wind direction as an input and
the sail position as an output. The input sets can be divided up into di�erent wind directions
and the output sets into di�erent sail positions. The input sets are therefore: wind across front,
wind at side and wind behind. The output sets are: all the way in, half out and fully out. It was
decided not to introduce a 4th set to represent a broad reach, where the sail is three quarters
of the way out as the robot's sail and wind sensor are not accurate enough to justify this. The
inference rules are shown in algorithm 7. As there are two di�erent angles where each rule is
true the sets must be duplicated for the wind coming over the left hand side of the boat and the
sail being on the right hand side as well as the opposite situation, this gives rise to sets with the
words left and right appended to their names. Full graphical de�nitions of the fuzzy sets can be
found in appendix K.

Algorithm 7 Fuzzy inference rules for sail control.
IF wind across front right THEN sail is all the way in on left

IF wind across right side THEN sail half way out on left

IF wind behind on the right side THEN sail is all the way out on left side

IF wind across front left THEN sail is all the way in on right

IF wind across left side THEN sail half way out on right

IF wind behind on the left side THEN sail is all the way out on right side

4.7 Data logging

In both the simulator and real world environments it is necessary to log data about the course
taken by the boat as de�ned in the requirements speci�cation section 2.3.6. The data needs to
be recorded often enough to show all of the moves taken by the boat and to e�ectively allow
them to be replayed for later analysis. The most obvious way to produce a log �le is using a
plain text format where each line represents a given point in time and each column a di�erent
variable. The variables which are required are the elapsed time since the log began, heading,

34

heading error, observed wind direction and X/Y (or Northing/Easting) coordinates. As there
is no support to produce a Northing or Easting from the robot these will simply be written as
zeros.

4.8 Other Design Issues

At this point in time there is no intention to implement a full scale bi-directional commu-
nications system, data logging system, collision avoidance, �eet management, fault diagnos-
tics/compensation or remote software upload facilities. This is due to the limited time available
on this project. Any �full� implementation of a sailing robot should include these features.

A problem has been identi�ed with the wire connecting the wind sensor on top of the mast to the
Basic Stamp, the problem very simply is that with enough turns of the mast in a single direction
the wire will eventually become wrapped around the mast and could eventually break causing
wind information to be lost. The software needs to keep track of how many turns the mast has
made and if the wire is becoming tight it needs to unravel the wire by turning the mast around
several times in the opposite direction. Doing this is likely to set the boat o� course and the
software will have to recover the boat to its previous state once the operation is complete. The
code to handle this could potentially be implemented at any level in the software, however if the
high level code were to implement it, then the e�ects would be seen in both the simulator and
on the robot.

35

Chapter 5

Calibration methods and results

The calibration of the sail servo, rudder servo, wind sensor and compass aims to produce tables
of data allowing for the conversion between the everyday units associated with these devices (in
all cases this is in degrees) and the values actually understood by the electronics. Before these
�o�cial� measurements were taken, a series of practice runs were made to establish the range of
values used by the sensors and servos, these values were then used as the basis for a specialist
calibration program which cycles the servos through all their possible values and for the sensors
requests that the user place them in given positions.

For the sail servo, rudder servo and wind sensor a small program has been written to place the
sail/rudder into one of several positions and then prompt the user to enter the actual angle of
the sail or rudder. Wind measurements are made by rotating the sail through 360 degrees, while
keeping the wind direction constant, this actually gives the wind values for di�erent directions
as the wind sensor is rotating rather than the wind. The actual code will have to take this
into account to determine the wind direction relative to the whole boat rather than to the sail.
The compass must be calibrated by constantly turning the boat and entering readings from an
ordinary compass against those taken from the on-board compass. To reduce the chance of
anomalies causing errors in the calibration, each measurement will be performed a total of �ve
times. The software to perform the calibration works by running on a laptop connected to the
basic stamp, it records all necessary data into a plain text data �le. The plain text data �le can
later be read by a spreadsheet in order to calculate medians for each data set which in turn can
be used to produce the calibration tables used by the actual control programs.

5.1 Rudder Calibration

The rudder was calibrated by placing a piece of paper containing a printout of a protractor
(which can be found in appendix B) with lines drawn every �ve degrees underneath the rudder
and setting the rudder to a number of di�erent positions and recording the angle at each position.
The zero degree line of this piece of paper was aligned to point towards the front of the boat. A
total of eleven di�erent values were sent to the rudder servo and each measurement was retaken
a total of �ve times. The program which set the rudder position would prompt the user to
enter the current angle of the rudder before it moved onto the next position, these angles were
recorded in a data �le against the values which had been sent to the servo, a full copy of this data
is available in Appendix F. Before the angle measurement was taken, but after each movement
of the rudder had taken place, the rudder was manually pushed to either the left or right (to the
left when on the right side of the boat and vice-versa) as it was decided that the action of the
water �owing against it would do similar. Typically this moved the rudder about two or three
degrees.

36

5.2 Compass Calibration

Compass calibration took place by placing the boat on top of a box on which it could be rotated,
turning the boat to a given heading, taking several readings from the compass. This was repeated
with the boat at di�erent headings of45 degree intervals. A photograph of this setup can be found
in �gure 5.2. As this data only gives a 45 degree accuracy and the relationship between the values
read from the compass and the heading is linear, a least-squares regression was performed upon
the recorded data in order too produce a general function describing the relationship, this function
is shown in �gure 5.1. This function was then used to derive a data table with 5 degree accuracy,
5 degree accuracy was chosen as the data sheet for the compass [39] speci�es an accuracy level
of approximately 10 degrees.
if v < 97
c = 1.64v − 158
if v >= 97
c = 1.64v + 202
Where c is the number of degrees and v is the value returned by the Basic Stamp.

Figure 5.1: Formula to convert compass values.

5.3 Sail and Wind Sensor Calibration

Sail and wind sensor calibration was undertaken by having a small program loop through all
possible positions for the sail and prompting the user for the angle of the sail at each of these
and recording these responses as well as the wind sensor value. The angle of the sail was measured
by placing a paper protractor (see appendix B) on the deck of the boat, upon this piece of paper
there were a series of lines at �ve degree intervals, a piece of copper wire was also attached to
the base of the mast to allow an angle to be read for each position, �gure shows this setup. A
simulated wind was provided by a fan placed at the height of the wind sensor and at a 45 degree
angle to the boat as illustrated in �gures 5.4 and 5.5 .

37

Figure 5.2: The compass calibration setup. By co-incidence the right side of the room shown is
almost exactly magnetic north.

Figure 5.3: The setup for measuring the angle of the sail. A piece of copper wire is attached to
the mast below the sail and facing the same direction as the sail, although its a bit di�cult to
see in this image. The piece of paper on the deck has angles marked out every �ve degrees, with
zero degrees facing towards the front of the boat.

38

Figure 5.4: The setup for wind testing. The fan was later moved to be at 45 degrees to the boat.

Figure 5.5: A more detailed view of the wind sensor on top of the mast.

39

Chapter 6

Implementation Discussion

6.1 Overview of the implementation

6.1.1 Basic Stamp Implementation

The Basic Stamp code is responsible for processing commands sent over the RS232 line and
then performing the appropriate action with the sensor or servo and �nally returning any data
or indicating that the command has completed. A fully working program was already supplied
by Dr. Mark Neal at the start of the project, however it has undergone signi�cant changes as
shown in appendix D. The original code worked upon the principle of allowing concurrency by
using a series of update commands which requested that a sensor updated itself and store the
value in memory for later collection via a get command, this principle also applied to setting
servos and the set commands would instantly reply before the servo had �nished moving. The
key problems with this approach are that there is no way for the code running on the Psion
(which communications with the Basic Stamp) to know when a set command has completed
or when a sensor has �nished obtaining its reading, this approach also requires a lot of extra
commands to be sent over relatively slow serial lines. If these two problems didn't exist then this
approach would work very well to facilitate concurrent operation of di�erent sensors and servos.
In order to solve these problems the original code was heavily edited so that no set commands
would return any data until they had completed the movement of the servo and get commands
would no longer require updates to have �rst been requested. This removed the problem of
having to guess when the Basic stamp had �nished a task and allowed much quicker response
times to events. Previously the Psion code was forced to wait the maximum possible time for
a command to complete before issuing the next command, this was especially problematic with
sail setting code as moving the sail 180 degrees takes several seconds while moving it one degree
takes takes less than one second. It was found that if the one command was accidentally issued
before another had �nished then the second command would never be executed by the Basic
Stamp and the Psion would then wait inde�nitely for a response e�ectively crashing it.

Once the Basic Stamp code had been changed so that commands did not signal their completion
until it had actually taken place, performance dramatically improved. However performance was
still poor as it was found that a delay of approximately one second was still required between
commands and setting the sail could take up to 15 seconds depending on how far the sail had
to move. The supplied code rotates the sail in a three-point control system, by moving it a
small amount then testing if it has reached the desired point and then moving on again, if it
overshoots the desired position it will then move in the opposite direction, once the desired
position is achieved it stops. The size of the motion is the same regardless of how far the sail
current is from its desired position. It was decided that this problem could be solved using a PID

40

Normal
Method

PID Controller Normal
method with
inter-turn
delays reduced

PID Controller
using small
turns.

Time to return from 180
degrees to 0

9.87 seconds 10.98 seconds 8.35 seconds 7.35 seconds

Time to move from 0 to
270 degrees

4.53 seconds 3.05 seconds 3.11 seconds 4.14 seconds

Time to move from 270
to 90 degrees

8.32 seconds 5.80 seconds 6.24 seconds 9.74 seconds

Time to move from 90 to
180 degrees

7.32 seconds 5.18 seconds 10.5 seconds 5.32 seconds

Total 30.04 seconds 25.01 seconds 28.2 seconds 26.55 seconds
Table 6.1: Table showing the a�ects of using a PID controller to rotate the sail.

controller running on the Basic Stamp as this would produce large moves when a large distance
needed to be covered and smaller moves when smaller distances had to be covered. The code was
based around the original sail movement code and still used exactly the same parameters allowing
the higher level code to remain unchanged. This could have theoretically been implemented at a
higher level by having the higher level code constantly monitor the sail position and request each
individual move itself, however given that each of these moves requires an additional delay of
one second this is impractical. The general result of the PID controller was a slight improvement
in sail turning times however problems where encountered with overshooting and despite plenty
of tweaking of constants it was not possible to completely remove this. A slight modi�cation to
the PID algorithm did manage to reduce this problem, by reducing the size of the proportional
constant when the required distance was small the overshoot problem was dramatically reduced.
It is possible that the same a�ect could be achieved through proper tuning of the system, however
given the poor repeatability of the system and the time it takes to tune this approach was found
to work better.

A small experiment was conducted to test the performance of the PID controller in comparison
to the original algorithm. This test was conducted by requesting a turn and measuring the
amount of time until the command was signalled as having been completed. Four tests where
performed, the �rst moves the sail from a position of 180 degree to 0 degrees, the second from
0 to 270 degrees, the third from 270 to 90 degrees and the fourth from 90 to 180 degrees. The
test was performed a total of 5 times and the mean result taken. The results of these tests are
shown in table 6.1. As the results show using a PID controller the turn time was reduced in
most cases and overall by 5 seconds or 17%. However the PID controller seems to have had
trouble positioning the sail back to zero (it kept overshooting) and took longer than the original
algorithm to do this. By using the reduced turn size when nearing the desired point this problem
was reduced but the PID controller still performed worse than the three-point controller in this
case.

6.1.2 Server Implementation

The server code runs on the Psion and is responsible for taking commands via a TCP/IP socket
using the protocol outlined in table 4.3, translating the values speci�ed in these commands to
values understood by the Basic Stamp, sending a command to the Basic Stamp and if appropriate
returning the result to the client. The server is written entirely in C and consists of four �les.
The �rst of these is sail.c which is responsible for serial port communications. The second is

41

calibrate_data.c which is responsible for converting values using a series of lookup tables based
upon the calibration data, commands.c which is responsible for determining which command has
been requested, requesting that any values be converted between real world measurements and
values understood by the Basic Stamp and �nally to call the appropriate function in sail.c to
send commands to the Basic Stamp. The �nal �le is server.c which contains the main function
for the server program and is responsible for listening on the TCP/IP socket and passing any
input onto calibrate_data.c.

6.1.2.1 Inter-Command delays and Caching Rudder and Sail values

Two major deviations from the original design were made in the server code these are the intro-
duction of caching on the sail and rudder commands and the addition of a 1 second minimum
delay between issuing each command to the Basic Stamp. Each time the sail or rudder is set the
value which it is set to is cached, so if a later call is made to request these values rather than
sending a command to the Basic Stamp the value cached in memory is sent. In addition to this
if a request is made to set the sail or rudder to the value held in the cache then no command is
sent as it can be assumed that the sail or rudder is already in this position. The inter command
delay was introduced because a problem where commands arrived over the RS-232 connection
too quickly for the Basic Stamp to react. The Basic Stamp would actually claim it was ready to
receive new commands, but would crash upon receipt of a new command unless approximately
one second had elapsed. The true cause of this problem was never established (the debug code
is suspected of slowing down the Basic Stamp), however a work around was created by enforc-
ing a mandatory one second delay between two commands being sent over the RS-232 line (or
more speci�cally the results of one command being received and the next command being sent).
Unfortunately this had an adverse a�ect on the time taken for the control algorithms to respond
to changes in the environment. For example the code would �rst read a compass heading and
wind direction, then set the rudder and �nally set the sails. This meant that 4 seconds would
be spent simply waiting on the Basic Stamp in performing regular tasks, when added to the
time it takes to set the sail (up to 15 seconds for large moves) the code ran into problems of
not being able to react to changes such as course deviations quickly enough. The result of these
actions signi�cantly improved the response times of the control algorithms, however the only full
solution is to use a single microcontroller capable of o�ering the necessary I/O facilities and pro-
cessing power in a single unit or o�ering high speed inter-device communication. This problem
is also exacerbated by the slow speed at which the sail servo moves and the inaccuracy of the
sail position sensor.

6.1.2.2 Automatic Wind Sensor Recalibration

In order to transport the robot without damaging the wind sensor it was necessary to remove
the plastic wind vane from the potentiometer and reconnect it after transportation, in doing
so the vane would be placed with the potentiometer rotated to a di�erent position making the
calibration data invalid. This problem was solved by using the calibration data to produce a
general linear equation to describe the relationship between the potentiometer's output value
and its angle. A small program was then produced which asked the user to place the wind sensor
at an angle of 0 degrees, it then took a reading from the potentiometer and recomputed the
calibration tables based upon the derived equation, taking the current position as 0 degrees and
recalculating the intercepts of the linear equation. This did have the slight side e�ect of causing
a loss of precision with certain wind directions as the potentiometer gives a few values which
are not part of the linear relationship as it approaches its maximum value. The calibration data
had been able to cope with this, however modelling this in a linear equation (or even two linear

42

equations) proved di�cult and the result was a small region in which the wind sensor was less
accurate.

6.1.3 Simulator Implementation

The simulator implementation required the production of an alternative TCP/IP server written
in Java, this manipulates a simulated boat based upon command received over the TCP/IP
socket. In order to implement this a new class had to be added to the simulator to provide
similar features socket listening and command parsing features similar to those of server.c and
commands.c in the server implementation. Once a command was processed some of the internal
variables of tracksail would either be modi�ed or returned depending upon the nature of the
command. The get functions proved relatively easy to implement as all that was required was
for the result of a get method to be returned to the client. However both the set sail and set
rudder commands proved much harder to implement. As shown in section 4.5.1.1 and 4.5.1.2
these algorithms are relatively complex and took considerable time and e�ort to implement. The
sail algorithm remained very much similar to that speci�ed in the design however the rudder
algorithm required some changes as the rotation was not very smooth when movement was only
undertaken once per second. Instead a system was devised that would vary the amount of time
between each turn and then make turns of one degree. This gave a much smoother and more
realistic feel to the rotation of the boat which and aided in producing of high level algorithms.

One problem encountered in adapting tracksail was the way in which it interpreted the angle's
for headings and wind directions. The default behaviour was to consider 0 degrees as being to
the right, 270 degrees as being upwards, 90 degrees as downwards and 180 degrees as being to the
left. Although having this all the wrong way round doesn't actually impede the ability to test
algorithms it is very confusing when trying to observe behaviour and work out if an algorithm is
behaving as expected. As a result of this problem a method was added to convert from tracksail
angles to �logical angles� where 0 degrees points upwards, 90 degrees points left, 270 degrees
right and 180 degrees down.

Another problem which proved to consume large amounts of time during testing was that tracksail
requires the user to start both a client and server, then using the client enter a player name,
choose a track to sail and click start game. These restrictions prevented automated testing if
the client was to be restarted in between runs, which was desirable in order to reset the boat
to the same conditions every time. To remove these restrictions the startup screen code was
recon�gured to automatically enter the username, select the track and start the simulation. To
further aid automated testing a shell script was produced to launch both the tracksail client and
server and the unwind command was adapted to signal that tracksail should exit.

As de�ned in section 2.3.3 the simulator needs to implement both a perfect mode and realistic
mode. Perfect mode is where the wind strength and direction do not vary and the boat will
remain on course once its initial position is set. Realistic mode is where the wind will vary in
strength and direction and the boat will deviate from its initial course as a real sailing boat
would. Tracksail works on a basis of de�ning a number of tracks which contain both the points
which players are meant to race around and a de�nition of the winds strength, direction and
variability. The track de�nition is of little importance to the simulation as no attempt is being
made to follow the de�ned tracks. The wind de�nitions are of great importance, in perfect mode
the wind must be set to a totally constant setting with no variability. In realistic mode these
settings need to be changed to be highly variable, making this change is simply a matter of
changing a few numbers in a text �le. Making the boat change heading is implemented as part

43

of the rudder setting algorithm, a random variable is used to decide if any change is needed,
the direction this change and its size if a change is made the heading is modi�ed by the desired
amount. A command line argument to the tracksail server is used to determine if this code is to
be active or not.

6.1.4 General Client Implementation

Despite there being two separate implementations (fuzzy logic and PID) of a client there is a
signi�cant amount of common code between them. These common features can be split into
two areas, �rstly there is the code which deals with communication to the server via a TCP/IP
socket and secondly there is some code which determines the di�erence between the current and
desired heading, determines the heading to follow if sailing into the wind, processes command
line arguments and performs logging to a �le.

The communication code is responsible for sending commands in the format speci�ed in table
4.3 and provides a series of general functions such as getRudder, getSail, getHeading, getWind-
Direction, setSail and setRudder which provide an easy to use interface to this code. These are
all placed within a �le called client.c which is linked with both the fuzzy logic and PID code
at compile time. The other common code is placed in a �le called control_common.c and is
responsible for determining the error between the current heading and the desired heading and
to deciding which heading to follow when tacking. Between them these functions implement the
algorithm speci�ed in algorithm 4. There are also two other functions for processing command
line arguments and performing logging. One slight issue with the command line argument pro-
cessing is that the parameters di�er slightly between the PID controller and the fuzzy logic as
the PID controller must be supplied with gain constants, while the fuzzy logic does not require
them. This causes a slight issue if the user forgets to give these arguments as no checks are made
for them, checks are made the common arguments which include the amount of time to spend
on each tack, the angle between the heading and the wind at which tacking will be performed,
the number of seconds to run the program for, the desired heading and whether or not the sail
should be unwound when the program �nishes.

6.1.5 PID Implementation

The PID implementation was split into two separate implementations, the �rst only implemented
proportional control and the second proportional, integral and derivative control. It was decided
that PID control of the sail could not be performed as it would be too dependant upon com-
munication between the Basic Stamp and Psion which do not perform fast enough to make
this practical, as discussed in section 6.1.1 the PID implementation for sail control was moved
to run entirely within the Basic Stamp. However this code still required the Psion to supply
a sail setting, initially this was performed with a series of �if� statements which analysed the
wind direction and set the sail accordingly however this proved to be di�cult to program and
produced messy code. A more elegant solution was undertaken in the form of a lookup table
which speci�ed the sail position for di�erent wind directions and used the calibration system
to calculate a sail position for a given wind direction the contents of this table can be found in
Appendix J. Rather ironically this solution is very similar to the implementation of the fuzzy
logic controller except that it is based on crisp sets where there is only one possible output for
each wind direction.

44

KP = 0.6KP

KI = 2/TC

KD = TC/8

Figure 6.1: The equation for tuning a PID controller using the Zeigler-Nichols Ultimate Cycle
Method, source Modern Control Technology page 381 [3].

KP 0.6
KI 1
KD 0.25

Table 6.2: The results of performing the Zeigler-Nichols Ultimate Cycle PID Tuning with the
simulator.

6.1.5.1 Simulator PID Tuning

PID tuning involves �nding the ideal settings for the proportional, integral and derivative gain
constants. The ideal setting will converge quickly to the desired state and once at the desired
state will not oscillate from it. In terms of positioning a sailing robot this means converging to
the desired heading and staying on that heading. In order to discover this in the simulator a test
was setup whereby the simulated boat had to turn to a heading of zero degrees from an initial
heading of 70 degrees and once on course it must hold the course without deviation.
An attempt was made to tune the PID controller using the Zeigler-Nichols Ultimate Cycle method
(also known as the Continuous-Cycle method) as speci�ed by Kilan [3]. This method involves
initially setting the proportional constant to 1 and the other two constants to 0 and gradually
increasing the proportional constant until a constant amplitude is seen in the oscillations. Once
this is complete the variable TC is calculated as the time (wavelength) between two oscillations
and is used to calculate the three constants using the formula show in �gure 6.1, the system can
now be considered tuned.
It was found that a proportional constant of one gave a regular oscillation every two seconds
(�gure 6.2 shows the graph for these settings). The results of the tuning are shown below in table
6.2. Based upon general observations these values did not seem to be particularly appropriate
as a large amount of oscillation was still occurring and although the oscillation reduced as time
went on it still took nearly a minute to eliminate itself, attempts to alter these values slightly
to counteract this did not see any great improvement. An additional test was performed to
investigate what happened when the proportional constant was increased to values of two and
three (and the integral and derivative constants left at zero). A proportional gain constant of
two showed a quicker convergence rate than a constant of one and also showed that the controller
converged on the desired course but continued to oscillate with a similar frequency and amplitude
as a constant of one had done. Increasing the constant further to a value of three yielded an
interesting result, the system entered a stable state and converged quickly and correctly to the
target heading. The results of these tests are shown in �gure 6.2. It was therefore decided to use
the values shown in table 6.3 for all further testing.

KP 3
KI 0
KD 0

Table 6.3: The results of performing a trial and error based tuning with the simulator.

45

Figure 6.2: A graph showing the current heading error against time for the PID tuning attempts.
The target heading was zero degrees and the start heading 70 degrees.

6.1.6 Fuzzy Logic Implementation

The fuzzy logic implementation consists of only a single �le called fuzzy.c. This �le contains code
which implements the fuzzy rules speci�ed in section 4.6.4 for controlling both the rudder and sail
as well as performing lookups in a series of data tables which de�ne the fuzzy sets. As speci�ed
in the design each fuzzy set is de�ned by a data table giving a probability between 0 and 100
along with an associated value. These tables are implemented simply by writing the probability
followed by a space and then the value onto a line within a plain text �le. Each fuzzy set which
is de�ned in the design has its own associated table �le, these are loaded into an array when the
fuzzy logic controller starts up. Two functions allow lookups to take place within the fuzzy sets,
one returns the probability that a given value is in the speci�ed set and the other defuzzi�es a
value to probability for a given set. The inference rules for both the rudder controller and the
sail controller are written into two other functions which rely upon these lookups in order to
make their decisions. Rudder decisions are made upon the basis of the current heading error
using the same code in control_common.c which the PID controller makes use of. Sail decisions
are made upon the basis of the current wind direction.

46

6.1.7 Linux Con�guration

The Psion was con�gured with a small Linux distribution based around a pre-compiled kernel
from the OpenPsion project [35] and the executables from the uClibc/uClinux distribution.
uClinux is able to use a program known as busybox which provides a single executable �le which
can replace most common unix commands with cut down versions, this allowed a su�ciently
capable Linux distribution to be build in approximately a megabyte. This was then placed on
a compact �ash card along with cross compiled versions of the program code and the Arlo boot
loader that allows a Psion to bootup Linux.

It was found that during real world operation and simulator testing that it was necessary to
vary the heading parameter of the control algorithms in order to allow the boat to sail back
to where it started and that this would vary depending upon the wind direction. Rather than
writing extra code into the control algorithms it proved easier to write a simple shell script which
invoked the control algorithms several times with varying headings. The shell scripts where also
used to automate the startup of the simulator and server code. In doing this con�guration of
the boat's course was greatly simpli�ed and the need for specialist code was replaced by a few
simple lines of shell script. The success of doing this reinforces the case for using Linux to control
the robot, had a simpler operating system (or no operating system) been used then there may
have been a need for large amounts of custom code to perform the same tasks. The infra-red
support was implemented by �rst compiling the IRDA-utils package which provides userspace
utilities to initialise the infra-red subsystems, an init script was added to allow the infra-red
system to be automatically started at boot (a copy of which is available in appendix L), an
instance of the getty program was also bound to the infra-red port this caused a login dialog
to be displayed when an infra-red client �rst connected and upon login presented the user with
a standard command shell interface from which they could perform any task which would have
been possible had they been using the Psion's keyboard and screen directly. If the infra-red
communication was broken and the re-established the user would be taken back to the login
prompt and all processes which they had launched would be stopped as soon as communication
was lost. This proved to be problematic as it caused the control programs to exit as soon as the
infra-red client was moved, to solve this the control programs were started via a shell script which
spawned a new virtual console for them to run on and thus prevented them from stopping upon a
loss of communications. Although infra-red communication reduced the di�culties encountered
in altering parameters once the Psion had been sealed inside the boat, it was by no means a
perfect solution as the remote system could be no more than a few centimetres away from the
boat and it was highly sensitive to the angle, communication was made harder by putty (which
was used as a sealant) obscuring the view through the perspex decking. Ideally some kind of
radio based system such as 802.11 or even Bluetooth is needed, unfortunately the Psion cannot
support either of these without hardware modi�cations.

A number of problems were encountered in using the Psion as a result of its poor quality serial
port connector, it was therefore decided to replace it with an HP Jornada 720 PDA (for more
details on this see section 7.5.2.3). The Jornada was able to o�er 802.11 wireless support and
thus reduced the problems of remotely con�guring the software. However it was not possible
to do this using the same Linux distribution which had been used on the Psion as there was
no wireless support built-in to uClinux and compiling wireless support for it was unsuccessful.
Instead a distribution known as Familiar Linux [40] was installed, this included full support
for wireless networks and included DropBear a small SSH (Secure SHell) server which allowed
remote logins' to the Jornada. Familiar Linux is not based around uClibc, but rather glibc
(the full version of the standard C library) as a result of this the uClibc cross-compiler would
not produce executables for Familiar Linux and a new cross-compiler aimed at Familiar Linux
developers had to be used to recompile all of the control software.

47

Chapter 7

Testing

7.1 Software Component Testing

7.1.1 Testing the Basic Stamp Code

The Basic Stamp code was tested via a simple menu program which allowed the user to perform
any of 7 functions, these were set the sail position, set the rudder position, get the sail position,
get the rudder position, get the wind direction, get the compass heading and unwind the sail.
When the user requested one of these options it would send the corresponding command over
the serial cable to the Basic Stamp and then display it's response on the screen. This could be
used to test the Basic Stamp code independently of the rest of the program.

7.1.2 Testing the Server code

The server code was tested by using the telnet program and a special version of the menu program
used with the Basic Stamp (known as netmenu) to issue commands over a TCP/IP socket and
monitor the responses. By sending commands over the TCP/IP socket additional data was
generated on the serial line which connects to the Basic Stamp and no return data would be
sent over the TCP/IP socket until a response was read from the serial line. This presented
two possible methods for testing, either connect the Basic Stamp and make use of the values
it received or connect the serial port to a terminal on a PC and simply type in random data
in response to each command. In the end both methods were used, the PC method was more
convenient for regular tests but didn't give realistic values or response times as the Basic Stamp
did. The server code is not only responsible for sending what is received on the TCP/IP socket to
the Basic Stamp and vice-versa but also for converting any values between those understood by
the hardware and real world values such as degrees which can be easily understood by humans.
In order to test that sensible values were being sent by the server code the translation code was
tested separately by creating a main function to the C �le responsible for this and using that
to pass in values and see the corresponding values on screen, manual lookups in the data tables
were then performed in order to check these values correctness.

7.1.3 Testing the Common Client code

The client code was perhaps the most complex part of the system to test as it consists of a two dif-
ferent client implementations in addition to a number of common functions for interfacing to the
TCP/IP socket and providing other common functions such as determining heading errors. The

48

TCP/IP interfacing code was tested using the netmenu program which as described in the previ-
ous sections allowed the user to select any one of seven common functions and send commands to
the TCP/IP server, the code for performing this was linked to the same socket interfacing code
as the AI algorithms in order to test it. The common code found in control_common.c which
determines heading errors and tacking decisions was not testable on its own as it could not be
run in a manner that was self standing, therefore it had to be tested by testing the PID and fuzzy
logic code and adding extra code to show the workings of these functions in order to verify their
behaviour. As both these functions performed relatively simple mathematical functions it was
possible to place the system into a state where the outputs of these functions could be calculated
using either a calculator or a spreadsheet and then verify the results, a copy of a spreadsheet
used to verify the heading error results can be found in appendix M.

7.1.4 Testing the PID Controller

The PID controller proved to be one of the hardest parts of the system to test. This was due
in part to its heavy interaction with other code and that in order to verify its output the other
code had to be running and working correctly. The PID controller testing was split into two
areas, testing the rudder algorithm and testing the sail algorithm. Testing was performed by
using a series of extra debug statements in the code in order to display the outputs from the
controller and the simulator was used for visual veri�cation of these outputs. In order to test
only the rudder algorithm the sail algorithm was simply made to set the sail to zero at all times
and vice-versa for testing the sail algorithm.

7.1.5 Testing the Fuzzy Logic Controller

The fuzzy logic controller was tested by observing its choices of rules of �nal decisions by manually
recalculating those decision based upon the data tables available to the fuzzy logic controller.
Initial tests where performed by removing the fuzzy logic controller from other code and only
having it display its results as numbers on screen. This allowed for a complete veri�cation of the
results before any testing took place with the simulator or robot. Later tests then placed the
fuzzy logic controller back into the full environment to test its interactions with other components
and to visually verify its output using the simulator. The fuzzy logic controller actually proved
to by very simple to test in comparison to the PID controller, this was due to the fact that
most of the intelligence actually came from the fuzzy sets which were produced using data tables
rather than computer code. This advantage was somewhat o�set by the time spent designing
and checking the fuzzy sets where correct.

7.1.6 Testing the Simulator

The simulator was tested via a number of stages, these were the TCP/IP protocol code, the sail
setting code and the rudder setting code. Before the sail and rudder code could be properly tested
it was necessary to prove the TCP/IP code was working correctly. In order to do this commands
where issued both via a telnet client and from the netmenu program. The 7 standard commands
were tested and additional test harness code was added to the server portion of the simulator in
order to establish that the parser code was correctly identifying the commands and was able to
return something, additionally malformed commands were sent to ensure that the correct errors
were returned. Once it was established that the TCP/IP code responded correctly the rudder
and sail code was tested in a similar manner, by using a combination of debug output from
the simulator code and observing the actions performed on screen it was possible to establish
if the sail or rudder actions were correct given inputs from the netmenu program. A number

49

of di�culties were encountered with the sail algorithm as there were several di�erent situations
which altered the algorithms behaviour, the main test being that the sail would set correctly
when the tack was altered. A common bug was that requesting a sail setting of 90 degrees
worked on both tacks, when it should have worked on one tack and a value of 270 should have
been required for the opposite tack.

7.1.7 Test Coverage

When testing any software system it is desirable to ensure that every single line of code is
exercised in the process of testing. Given the relatively small size of the code in this project the
tests described in the previous sections where capable of reaching every single line of code in the
system. As there were few conditions that occur exceptionally rarely this was relatively easy to
achieve. The main area in which such conditions occurred was in the string parsing code of the
server where a number of if statements are used to look for mis-formed strings and obscure error
conditions such as sockets terminating in the middle of ongoing communications. It was found
that testing these was possible by deliberately stopping either the TCP/IP client or server in the
middle of normal program operations and by placing malformed commands into the socket by
deliberately mis-typing them over the a telnet session and observing the resulting error messages.

7.2 Algorithm Performance Testing

In order to e�ectively test the performance of algorithms and produce a comparison between
the fuzzy logic and PID algorithms as well as determining optimal gain constants for the PID
controller a method for testing the performance of each algorithm was required. The aim of
this test was to establish which algorithm could make the boat sail most e�ciently. The ideal
algorithm needs to be able to quickly position the boat on the correct heading, maintain the
heading with minimal deviation, set the sails correctly so that the boat is able to sail as quickly
as possible and be able to adjust the sails e�ciently as the wind and/or course changes. An ideal
algorithm also needs to be able to perform well on all points of sail.

In order to perform such an evaluation it was necessary to the boats position, heading and desired
heading. Within the simulator this can be done simply by logging the X and Y co-ordinates which
are stored internally by the program, for the actual robot this required a GPS to be placed on
board and used to log data which could be matched up to the corresponding log data for the
heading and desired heading at a later point in time.

7.2.1 Algorithm Evaluation Methods

7.2.1.1 Distance Covered vs Straight Line Distance from start to �nish

By measuring the straight line distance from where the boat began to where it �nished up and
then dividing this by the distance of the journey it actually took a ratio for how e�ectively
a course was followed can be generated. This can be calculated by taking the X and Y (or
Latitude/Longitude) co-ordinates of both the start and stop point and treating them as a triangle
and using Pythagoras's theorem to determine the length of the line. The distance actually
travelled can be calculated in a similar manner where the distance between each recorded point
and the next recorded point is calculated using Pythagoras and the total of all these distances
taken as the total distance covered. Figure 7.1 shows an example plot with both the actual
course and the straight line course shown. One shortcoming of this method is that if the boat

50

Figure 7.1: Example plot showing how course e�ciency can be measured.

goes in the wrong direction but still sails e�ciently then it will score highly, another is that if it
doesn't move (or goes round in very small circles) then it may also score highly.

7.2.1.2 Distance from goal

This method sets a goal point to which the boat needs to try and reach, the nearer it gets in a
constant amount of time the better. This method addresses the problems of the boat sailing in
the wrong direction or not moving at all. The di�culty is establishing a good goal point as such
a point needs to beyond a distance which can be practically reached, the desired point needs to
be further than the boat could possibly travel in the allocated amount of time in order to prevent
it from passing the point and skewing the results. It is also somewhat di�cult to make either the
simulated boat or the real robot travel towards a goal point as neither allows the user to specify
this, they only allow a desired heading to be speci�ed. However this method can still be used by
specifying a goal some distance from the start point which is also on the correct heading from
the start point. It is possible to calculate the distance from the goal by taking the last point the
boat reached before the allowed time expired and measuring the distance from this point to the
goal, again using Pythagoras.

7.3 Full System Testing

In addition to testing individual components it was necessary to verify the behaviour of the system
as a whole to ensure that all levels of communication worked correctly and that the system was
capable of performing the tasks required of in both the simulator and robot environments.

7.3.1 Simulator Tests

Once component testing of the simulator was complete and it was con�rmed that the simulator
responded correctly to commands sent to it either via a telnet session or the netmenu program,

51

control was switched to the normal PID and Fuzzy Logic code. The resulting motion was observed
visually via the simulators GUI interface and also logged as part of the PID and fuzzy logic code.
The position data or the time/heading data from the log �les was then used to draw a data plot
to show the course taken over the entire test, an example of such a plot is shown in �gure 7.2.
Two tests were conducted for each algorithm, the �rst was to sail a beam reach on a speci�ed
heading, then perform a 180 degree turn and sail back to the start point and the second to sail
a triangular course again returning to the start point.

Figure 7.2: Example plot showing the path taken by the boat during a simulator run. It is also
possible to plot the heading against time instead of the explicit X-Y co-ordinates.

7.3.2 Lab Testing

Lab testing took place by placing the robot in a position where it could be manually rotated,
as shown in �gure 5.2 and the wind �simulated� as shown in �gure 5.4 and 5.5. The control
algorithm was then started up, whenever the rudder was rotated the boat was turned to show
a corresponding turn and when the rudder was straightened the turn stopped. This o�ered a
chance to test the performance of the algorithms on the actual boat and check that reasonably
correct behaviour was being applied. It also allowed for the entire system to be tested as a
whole and for prolonged amounts of time in order to uncover any problems that might result
from communication errors, memory leaks etc. This testing also made it possible to observe the
typical response times of the robot to changes in its environment. It was still not possible to
simulate a number of real world conditions in this testing the most important of these being the
speed at which the robot was able to turn on the water and the e�ects of movement and tilting
upon the hardware and sensor readings. Ideally an additional testing step would have been to
test on some kind of swimming pool or test tank in order to discover these problems without
having to deal with the di�culties of variable weather in the real world, unfortunately no such
setup was available.

52

7.3.3 Real world Testing

Real world testing was undertaken on a small lake near Aberystwyth, this reduced the chance
of the boat being lost as should the code crash the boat would most likely drift towards shore
within a relatively short amount of time and it would often be possible to recover by throwing a
rope over it. The intention was to test the algorithms by �rst trying to cross the lake by sailing
along a �xed heading, then to attempt to sail across the lake and back on a beam reach and
�nally to sail a triangular course using three di�erent points of sail. Before running such tests
the wind direction was determined through a combination of visual observation and the use of
a hiking compass, this allowed for an appropriate course to be determined for each test. During
each test a GPS receiver was placed onboard the boat in order to allow the course taken to be
recorded using the built-in logging functions of the GPS receiver. Each set of tests was to be
repeated with di�ering gain constants using the PID controller and also with the fuzzy logic
controller, if possible each test was to be performed multiple times as di�ering wind conditions
would not make the comparisons fair and there was a desire to test repeatability.

7.4 Using the evaluation methods e�ectively

The methods speci�ed in the previous section can be combined with some common sailing tasks
in order to produce a comprehensive testing system. The �rst to have it sail away from its start
point on a beam reach and then turn around and return to the start and second to have it sail
in a complete triangle again returning to the same start point.

7.4.1 The Beam Reach test

A beam reach involves sailing perpendicular to the wind and on this point of sail it should be
possible for the boat to sail in one direction for a given amount of time, turn 180 degrees and
then sail back on the opposite tack (with the wind now at 270 degrees in relation to the boat,
instead of 90 degrees or vice-versa). The result of this should be that the boat is able to return
approximately to its start point. In order to measure how well the course is sailed the course
needs to be considered in two parts, the part before the turn and the part after. For each of
these the course e�ciency needs to be taken as well as the distance from a goal, which needs to
be along the course the boat is travelling but beyond a the distance it can possibly reach. It is
likely that a signi�cant amount of sideways movement will occur during testing of the robot on
this course given that the boat has a very narrow keel and so little very little to prevent this
happening when the wind is blowing across the side in this manner. Figure 7.3 shows an example
plot of a boat attempting to sail in this pattern.

53

Figure 7.3: An example plot showing the course taken during the beam reach test.

7.4.2 The Triangular Course test

A common task when teaching humans sailing is to ask them to sail a triangular course, this is
done as it usually requires the use of 3 points of sail and for sailing into the wind to be performed.
It therefore seems logical that an autonomous sailing boat should be capable of performing this
task and that asking it to do so is a good test of the arti�cial intelligence algorithms. Any
algorithm which is able to sail a triangular course reasonably well should be able to sail the boat
to any position its operator desires. The triangular course can be speci�ed as three di�erent
headings with 60 degrees between each. In order to form a triangle and actually return to the
starting point, the boat will have to spend more time on some parts of the triangle than others as
it will move fastest when sailing on a beam reach and slowest when sailing close hauled, therefore
the time spent on each part of the triangular course must compensate for this in order to produce
equal lengths to each side of the triangle and these timings must be determined manually through
a process of trial and error they will also di�er between the algorithms. It is also likely that some
sideways movement will occur on the actual boat and that given the lack of GPS support this will
not be detected or compensated for and as a result the robot will not produce a perfect triangle.
As with the beam reach an evaluation needs to be undertaken for each side of the triangle, when
comparing two algorithms each portion of the triangle is compared against the same portion for
other algorithms. As the goal is to return to the start point it may also be useful to see how far
from this point the boat ends up, although evaluating against this alone is prone to problems as
the boat will also be close to this point if it never moves. Figure 7.4 shows an example plot of a
boat attempting to sail in a triangle.

54

Figure 7.4: An example plot showing how a triangular course is performed. It should be noted
that a triangular course does not always require sailing into the wind and can sometimes be
performed without repeatedly tacking across the wind.

7.5 Testing Results

7.5.1 Simulator Test Results

7.5.1.1 PID Controller Results

The PID controller was given the optimal constants de�ned in section 6.1.5.1 which were a
proportional gain of 3, integral and derivative gain of 0. The beam ream test was conducted by
con�guring the PID controller to sail a beam reach for one minute on a heading of 180 degrees
after which it sailed for one minute on a heading of 0 degrees. The triangle test was conducted
by con�guring the PID controller to sail on a heading of 180 degrees for 60 seconds, then on a
heading of 315 degrees for 60 seconds and �nally a heading of 45 degrees for 30 seconds. The
timings were decided as they were found to return the boat to its start point, a trial and error
process was used to determine these values. In both tests the PID controller performed very well
as the results in tables 7.2 and 7.1 show. Graphs showing the exact paths taken can be found
in appendix P. It seems the key to success with the PID controller is the ability to move very
quickly to a new course and to hold that course accurately once it has been reached.

Journey Total Dis-
tance

Straight
Line
Distance

E�ciency
Ratio

X
End

Y
End

X
Goal

Y
Goal

Distance
from Goal

Outward 619.310 579.346 93.5% 137 -552 0 -550 137.0145
Return 688.556 587.020 85.2% 246 2 137 -552 564.621

Table 7.1: The results of the simulated PID controller beam reach test.

55

Triangle
Portion

Total Dis-
tance

Straight
Line
Distance

E�ciency
Ratio

X
End

Y
End

X
Goal

Y
Goal

Distance
from Goal

1 629.726 573.900 91.13% 161 -540 0 -550 161.310
2 522.990 477.322 91.26% -178 -231 -270 -270 99.924
3 412.768 401.110 97.17% 82 79 40 21 71.610

Table 7.2: The results of the simulated PID controller triangle test.

7.5.1.2 Fuzzy Logic Controller Results

The fuzzy logic tests were performed in the same manner to the PID tests, the same timings of
one minute each way were used in the beam reach test and a new set of timings determined for the
triangle test in order to allow the triangle to actually be completed. As the plots in appendix P
show the fuzzy logic controller encountered di�culties in reaching its desired heading and appears
to have settled on a heading somewhat short of the speci�ed one, it also takes signi�cantly longer
than the PID controller to achieve this. Upon closer examination it was found that a bug in
the defuzzi�cation routines would cause an incorrect output to be produced thus resulting in the
wrong heading being followed. It was also realised that the current set de�nitions are comparable
with a proportional gain constant of one in a PID controller as one degree of error equates to one
degree of movement, it may therefore be possible to improve the convergence speed of the fuzzy
logic controller by altering the set boundaries so that the probability that the boat is o�-course
reaches 100% far sooner. Despite these problems the fuzzy logic controller is able to control the
boat in a reasonably sensible manner and it is likely that with some additional tuning it could
be made to match the performance of the PID controller.
Journey Total Dis-

tance
Straight
Line
Distance

E�ciency
Ratio

X
End

Y
End

X
Goal

Y
Goal

Distance
from Goal

Outward 620.605 547.891 88.3% 456 -329 0 -550 506.731
Return 589.951 478.682 81.1% 823 -36 456 -329 469.614

Table 7.3: The results of the simulated fuzzy logic beam reach test.

Triangle
Portion

Total Dis-
tance

Straight
Line
Distance

E�ciency
Ratio

X
End

Y
End

X
Goal

Y
Goal

Distance
from Goal

1 643.950 570.411 88.57% 467 -346 0 -550 509.613
2 616.912 517.549 83.89% -1 -177 -173 -173 172.047
3 204.865 180.050 87.88% 19 8 27 17 12.046

Table 7.4: The results of the simulated fuzzy logic triangular test.

7.5.2 Real World Test Results

7.5.2.1 First Test - April 8th 2005

During this test the boat was never actually launched into the water. This was in part due to
snow and cold weather and in part due to some Psion speci�c bugs in the code which prevented
correct parsing of commands in the TCP/IP server. An attempt was made to �x these bugs on
site but due to the poor weather the decision was made to take the boat back to the lab and
continue debugging there.

56

7.5.2.2 Second Test - April 27th 2005

During this test an initial run was made using the proportional controller code in an attempt to
sail a beam reach (perpendicular to the wind direction) and then turn around after 100 seconds
and sail back. Unfortunately the boat made some stranger maneuvers in the �rst few seconds
of operation which tangled the cable linking the wind sensor to the Basic Stamp this prevented
the sail from turning and thus left the Basic Stamp's sail algorithm constantly trying to move
the sail and caused the Psion based code to block. At the same time the rudder was fully turned
and the combination of this and the resulting sail position actually caused the boat to enter a
state known as �heaving too� in which the sail and rudder contradict each other to leave the
boat in a near stationary position. The result of this was that the boat occasionally turned in
a circle or sailed backwards while gradually drifting further from the shore. The map recorded
by the on-board GPS can be seen in �gure. Matters were made worse by changing winds which
due to local topography shifted between the southwest and southeast. Later it was identi�ed
that the compass appeared to be giving the same reading at all times this was attributed to a
hardware fault. In order to work around this problem it was decided to use the wind sensor
to as a direction sensor and to keep the boat with the wind at the same angle, this would in
theory cause the boat to go in a straight line providing the wind did not change. Unfortunately
this did not work properly either as the wind sensor began to return consistent values regardless
of its position, after con�rming that the wind results where correct via the Basic Stamp it was
concluded that the rather loose �tting RS232 connector on the Psion was at fault.

Figure 7.5: GPS Plot of the �rst test in which the sail jammed and the boat was eventually
pushed onto shore.

57

Figure 7.6: Photo illustrating the wire wrapped around the mast, this prevented the sail from
turning and in turn prevented any further commands from being issued as the sail code contin-
uously attempted to correct this.

7.5.2.3 Third Test - April 28th 2005

For this test the hardware platform was changed from a Psion 5mx to a Jornada 720, another
PDA or similar size and shape which is also based around an ARM processor and capable of
running the same Linux operating system and control software. The main reason for doing
this was that the Psion's serial connector was moving out of place as the boat turned and
causing communications with the Basic Stamp to stop and the Jornada features a much more
robust serial port connector, additionally the Jornada features a PCMCIA slot and allowed for
a wireless network card to be placed on-board allowing for remote access to the boat from a
much greater distance than that permitted by the Psion's infra-red port. Despite this a problem
occurred when the boat sailed out of radio range from the shore, due to the manner in which
peer to peer wireless networks operate when the boat appeared back in range of the laptop they
were unable to re-establish communications as each card formed its own independent cell once
the signal was lost and would not automatically merge back into a single cell once signal was
regained.

Given previous experience with the control of the sail it was decided to manually set the sail's
position and then use the code only to control the rudder in order to keep a given compass
heading. The wind was blowing from the north west allowing for a beam reach to be sailed from

58

Figure 7.7: Four stills extracted from video of the second test showing the extent to which
oscillation was occurring.

the southern shore to the eastern shore of the lake on a heading of approximately 45 degrees. In
order to achieve this the sail was manually positioned to approximately 315 degrees.

This test was generally more successful than either of the previous two tests, a total of four
test runs were performed. In the �rst an attempt was made to sail in a straight line from the
southern shore of the lake to the eastern shore on a heading of approximately 40 degrees. The
code was started manually from the laptop via the wireless connection and upon loosing signal
approximately 100 metres from shore the program stopped as the login shell from which it had
been launched timed out and terminated. Despite this the boat continued without software
control on its existing course with little deviation and was able to sail across the lake.

For the second test the same course was attempted but the program was made to spawn o�
processes onto a separate virtual console (this approach had been taken on the Psion) to prevent
them from terminating when the process which launched them exited (as it does upon loosing
its network connection). During this test the boat was able to again sail across the lake in a
reasonably straight line, however a large amount of oscillation was observed suggesting that the
proportional gain constant was set too high. Figure 7.7 shows four stills from a video of this
test illustrating the level of oscillation which was occurring, each of the frames shown were taken
with only a few seconds between them. In order to test the repeatability of this a total of three
separate voyages were made, the code was left running between each of these as the boat was
carried back to the start point. A GPS plot of this test is shown in �gure N.2.

59

For the third test it was decided to reduce the proportional gain constant from two to one and
to conduct the full beam reach test, having the boat turn around and sail back to its start point.
This was achieved by writing a small shell script which would sail for three minutes on a course
of 45 degrees and then exit, the netmenu program was then used with a redirected standard
input to change the sail position from 315 to 45 degrees (as the sail setting had been disabled in
the normal code) and �nally another instance of the proportional controller code was launched
this time sailing on a heading of 315 degrees for an in�nite amount of time. The result was
generally encouraging with the returning to within 30 metres of its launch point. It was also
found that reducing the gain constant reduced the oscillation signi�cantly, this can be seen in
the heading/time plots in appendix O.

For the fourth test it was decided to try the fuzzy logic controller and to have the boat sail
the same course as the third test but to make it perform this three times. Unfortunately after
making its �rst run the wind strength began to drop signi�cantly and after rotating the sail it
took the boat approximately 2 minutes to get onto the correct heading, after the next turn was
made a minute later the wind had almost disappeared and the boat then drifted for a further 15
minutes at which point the code exited leaving the boat without any control code. Finally after
another 12 minutes it was eventually blown back onto shore by the then virtually non-existent
wind. One observation of the fuzzy logic controller was that it was waiting far longer between
rudder movements than the proportional controller, this caused it to oscillate far more than the
proportional controller had done although it showed that there could be several seconds of delay
between each rudder movement without adversely a�ecting the boat's ability to keep itself going
in the correct direction.

7.5.3 Known Bugs

7.5.3.1 Jornada leading byte upon server restart

A problem was identi�ed when running the code with the Jornada 720 (and only the Jornada
720) that once the server application had been started and had issued some commands to the
Basic Stamp then if it were restarted a leading byte would then appear on the Basic Stamp upon
the receipt of each command. This caused the Basic Stamp to mis-recognise each command it
received and thus stop responding. The true cause of this issue was never discovered and the
commands produced by the Jornada were found to be correct when it was connected to other
terminal equipment for diagnosis.

7.5.3.2 Stability of the Basic Stamp code.

A number of bugs exist in the Basic Stamp code which cause it to crash at times thus preventing
the robot from continuing its normal operation. One such bug is that there appears there needs
to be a minimum of at least one second between issuing two commands over the serial line, if
not the Basic Stamp will crash. However to make matters worse this condition does not appear
everytime less than one second elapses between commands and also appears to be more common
after the set sail command than any other. It is unclear if this bug is connected with the problems
seen with the Jornada issuing extra bytes.

7.5.3.3 Sail updates too frequent.

Given the slow rate at which the sail turns and the inaccuracy of the sensor, it typically takes at
least three seconds to move the sail during which time no other commands can be issued. This

60

Run Num-
ber

1 2 3 4

Controller
Type

Proportional Proportional Proportional Fuzzy

Constants 2 2 1 N/A
Observations Sailed across

lake despite
loss of wire-
less signal
causing code
to terminate
halfway.

Sailed across
lake with code
running the
whole time.
Observed to
oscillate quite
considerably.
Repeated this
three times,
but kept the
code running
while bringing
the boat back
to the launch
point.oscillate

Sailed across
lake and back.
Observed to
oscillate far
less than with
a gain constant
of 2.

Sailed to mid-
dle of lake
before wind
dropped o�
leaving it to
drift to shore.
Observed
considerable
oscillation.

E�ciency
Ratio

95% 97.5%, 99.5%
and 99.6%

95.85% out,
86.98% coming
back (This is
reduced by
the turn which
aims the boat
back at the
shore)

52% overall,
99.4% for
initial journey
before wind
dropped.

Table 7.5: Table describing each journey made during the test runs. It has been observed that
the GPS failed to take enough samples to show the true course taken by the boat and as a result
the e�ciency ratios are higher than they should be. 2

61

is su�cient time for the boat to move o� course by at least 45 degrees, as the code currently sets
the sail everytime it goes round its main loop this causes immense problems in controlling the
boat e�ectively. During real world testing the sail setting code had to be completely disabled
and the sail set manually in order to avoid this problem.

7.5.3.4 Fuzzy Logic Controller fails to centre properly

A bug in the fuzzy logic code prevents the fuzzy logic controller from centering on the desired
heading and consistently leaves the boat o� course. This is due to a problem defuzzifying to a
set which has two sloping boundaries (the centre rudder output set is the only set in the system
to feature this). It should be possible to solve this by splitting this set into two, one for when
the boat is centred but still to the right and one for centred and to the left.

62

Chapter 8

Project History

8.1 A month by month account of the project

This section gives an account as to what was achieved in each month of the project. A copy of
the original project timetable can be found in Appendix Q.

8.1.1 October 2004

During October the initial background research to the project was performed and the initial
version of the Market Analysis was written. A basic version of the serial protocol was imple-
mented in C and tested on a Linux laptop, this allowed the laptop to control the basic features
of the boat. Research was also undertaken to �nd a suitable simulator, after assessing many
projects Tracksail[38] was found to be the only suitable program available. Additional research
was undertaken into cross-compilers, several cross-compilation strategies including manually re-
compiling GCC, pre-built cross compilers, crosstool and �nally uClibc Buildroot where tested.
uClibc was chosen as not only did it include a cross compiler, but it also prepared a complete
Linux system image which the Psion was able to boot successfully.

8.1.2 November 2004

During November the bulk of the low level implementation and calibration was completed. Cal-
ibration had originally been tasked with taking only one week, but as initial results were not
satisfactory some calibration had to redone. Problems also emerged with the compass at this
point, it was found that the compass was always returning the same value, this was eventually
traced to a hardware fault and as a result compass calibration was not completed until early
February. An initial implementation of the server was also undertaken during November, how-
ever problems were encountered with the sail setting algorithm. This implementation succeeded
in o�ering all other simulator facilities. Towards the end of November additional changes were
made to the documentation, with an initial production of the design and calibration sections.

8.1.3 December 2004

During December the TCP/IP system was implemented and an initial proof of concept program
was written using this. Initially this program would align the sail with the wind sensor, if the
wind sensor moved the sail would then move to the same angle. This algorithm then evolved
into the beginnings of a proportional controller.

63

8.1.4 January 2005

As a result of the Christmas break, other coursework and exams very little work was undertaken
during January. This caused some slippage against the original timetable speci�cation. A small
amount of work was carried out in relation to compass calibration and �xing bugs within the
TCP/IP and serial handling code.

8.1.5 February 2005

During February a number of outstanding issues where solved, these included the simulator and
compass calibration, the Basic Stamp code was also completely restructured with some minor
changes to the serial protocol emerging. Once this was complete an implementation of a PID
controller began, this was based upon the proportional controller written during December.
Development of the PID controller was also coupled with the development of methods and
specialist programs to aid in algorithm development as well as the addition of logging features
to the high level code, this allowed for various variables such as the course taken, heading error
and boat positions to be graphed and analysed. It was hoped that some initial testing could be
carried out on the water during February, unfortunately bitterly cold weather prevented this.

8.1.6 March 2005

During March further development of the PID controller was undertaken and a series of simu-
lator tests were conducted. This information was then analysed using additional scripts which
implemented the algorithm evaluation strategies, selection of optimal values from this process
is still being undertaken. Towards the middle of March the documentation was converted from
OpenO�ce to LATEX and �nally to LYX as OpenO�ce was causing problems with layouts, bib-
liographies and sectioning. The design section was also expanded, and the beginnings of the
testing and conclusion sections were produced.

8.1.7 April 2005

During April implementation of the fuzzy logic controller was undertaken. Large amounts of
testing were performed in the lab by rotating the boat around and using a fan to simulate wind,
this testing helped to identify a number of issues with the control code and several Psion speci�c
bugs which had not been found during earlier tests using a laptop to control the robot. An
initial attempt to perform a test on the water was thwarted by a combination of bad weather
and buggy code. A later attempt proved somewhat more successful with the boat actually
entering the water, however a series of hardware faults prevented it from sailing correctly. A
�nal attempt saw a far greater level of success with four test trips taking place, the hardware
was also changed from a Psion 5MX to a Jornada 720 a more powerful PDA with a similar (but
faster) Strong ARM processor and the ability to run a wireless network.

64

Chapter 9

Evaluation and Conclusion

9.1 PID vs Fuzzy Logic, Which worked best?

Generally it was found that the PID controller yielded better results than the fuzzy logic controller
in both the simulator and on the robot. However far more time and e�ort was spent tuning the
PID controller and if the fuzzy logic controller had seen similar tuning then the �nal result may
show less of a di�erence. The fuzzy logic controller also su�ered from poor winds during the
robot testing. The simulator tests showed that the fuzzy logic controller was far slower at turning
towards the correct heading and never actually managed to achieve the correct heading, this may
in part be due to a bug in the implementation of the fuzzy logic controller and due to a lack of
tuning with the set boundaries. However it is believed that the current set de�nitions for rudder
control should o�er similar performance to the PID controller running with a proportional gain
constant of one, yet performance still seems to be worse than this. In order to truly decide which
is the better strategy for controlling a sailing robot further investigation needs to be undertaken.
It is quite possible, especially given the nature of the hardware in this project that a fuzzy logic
controller could yield better results. As the accuracy of the sail positioning di�ers depending on
the desired direction it maybe possible to improve this by altering the fuzzy set de�nitions in
place, doing this with a PID controller is much harder given that it forms a general rule which
applies to all possible positions and basically assumes hardware behaves consistently regardless
of its position.

9.2 Evaluation

Overall this project has managed to ful�l its aims in producing software which is capable of
controlling a sailing robot to allow it to follow a pre-determined course, but only within a
simulator. In the real world the software still requires additional development in order to do this
fully and to a large extent the lack of ability to do this is more a result of unreliable hardware
than poor software. Despite its shortcomings the resulting software is able to produce the
correct moves in many situations and has been produced in a highly portable manner allowing
it to theoretically work with any POSIX compliant operating system that includes a C compiler.
This has been illustrated through its use on both laptop and two PDA Linux systems based
around two very di�erent Standard C Libraries and three di�erent distributions. The simulator
is capable of providing a reasonably accurate simulation of a sailing boat and is able to show its
output both in a realtime graphical form and by saving data to a log �le containing headings,
position, wind direction etc. It is also capable of running under the same control algorithms the
boat does and performing somewhat similar actions.

65

9.2.1 The �nal product compared with requirements speci�cation

9.2.1.1 Hardware Requirements

The requirements speci�cation states the need for an appropriate hardware platform to be identi-
�ed and that this platform needed to be capable of both interfacing with the sensors and servos as
well as having enough computing power to perform the AI functions and enough storage space to
log any data which is generated. It was believed that this requirement was satis�ed by the com-
bination of the Basic Stamp microcontroller and the Psion 5mx with the Basic Stamp supplying
the I/O facilities and the Psion supplying the computing power and storage facilities. Unfortu-
nately linking these two proved to be problematic as it increased response times between sensing
an event such as a wind change and responding to them. The physical cable linking the two
devices also proved to be a source of communications problems. These problems were addressed
by the Jornada 720 which also satis�ed all the other requirements which the Psion 5MX had
passed. If a suitable budget had been available then a more appropriate microcontroller which
combined the I/O facilities of the Basic Stamp and the computing power of the Psion could have
been used, such microcontrollers include the Gumstix[41] or LART [42]microcontrollers all of
which are based around ARM processors similar to that of the Psion and are capable of running
Linux while at the same time providing at least 10 general purpose I/O lines.

9.2.1.2 Sensor and Servo control software

The requirements stated the need for the software to be able to interact directly with the sensors
and servos and relay information from them onto higher level code which was responsible for
decision making. Such software was implemented in the form of the Basic Stamp code and the
TCP/IP server code which interacts with it, this code was also able to provide a translation
from device speci�c measurements such as PWM timings into human understandable ones such
as degrees. The requirements stated the need to possibly control GPS or radio link hardware,
no low level support was written for GPS although higher level support was implemented, no
radio link support was attempted at this level, however a simple system was implemented via
the use infra-red and wireless network communications to the Psion/Jornada in order to reduce
the number of times the robot needed to be opened to update settings.

9.2.1.3 Arti�cial Intelligence Algorithms

The arti�cial intelligence algorithms were required to be able to control both the robot and the
simulator in a reasonably intelligent manner. This included following the basic rules of sailing
such as avoiding sailing directly into the wind. Both the PID and fuzzy logic implementations
when run under the simulator are capable of sailing intelligently and will allow the simulated
boat to sail in any direction it is told and will avoid sailing directly into the wind when required.
However when run on the robot the code performs far from perfectly, this is mainly due to
performance issues, the code is actually making reasonably intelligent movements but is unable
to perform these quickly enough in order to make the boat appear to be doing anything remotely
intelligent or correct.

9.2.1.4 Simulator Requirements

The original requirements called for a simulator which was capable of acting a reasonably realistic
manner and producing either graphical output or logging data to a �le. The chosen simulator
was based upon an open source project called Tracksail [38], it was able to ful�ll the requirements

66

of producing a reasonably realistic simulation and presenting the output graphically in realtime.
Additional changes were made to allow the same code which ran the robot to interact with it
and to allow logging to a data�le.

9.2.1.5 Navigation Requirements

The requirements speci�ed that there should be some means by which the system can navigate
in order to follow a pre-determined course and that ideally such a navigation system should not
be prone to errors as a result of tilting and that it should be able to update quickly enough to
keep the boat on a straight line. In the �nal system the only navigation equipment available was
a compass which unfortunately did not have any means by which it could be kept level however
it did prove to be able to update quickly enough to keep the boat on a reasonably straight course
(once the sail setting code was removed to allow the compass to be read regularly enough).

9.2.1.6 Portability Requirements

The requirements stated that the code should be as portable as possible and be capable of
running on a variety of CPU architectures and operating systems. So far the code has been
successfully proven to work under Mandrake Liunx 10.1 running version 2.6 of the Linux kernel
using a Pentium 3 processor, on a Psion running uClinux with a version 2.4 of the Linux Kernel
running on an ARM7 processor and on a Jornada 720 running Familiar Linux 0.82 using version
2.4 of the Linux kernel and a StrongARM-1100 processor. An attempt has been made to produce
all code in a portable manner and no operating system or CPU architecture speci�c features have
been used in the C code. The Java code has been tested using Sun Java version 1.5 on Linux,
Windows and Solaris. Additional testing with other POSIX compliant operating systems such as
BSD Unix or QNX should be undertaken to establish exactly how portable the current code is.
One desirable feature is that the code can be ported to an operating system-less microcontroller
which has support for the C language, in order to do this some changes would be required, such
as the serial port and socket code as these features would not be supported (at least in their
current form) without an operating system.

9.2.1.7 Data Logging Requirements

The requirements speci�ed that the program should be able to log data to a �le for recovery
and analysis at a later point in time. The program writes the current elapsed time, heading,
heading error, position (simulator only, 0s are written on the robot) and wind direction at regular
intervals to a data �le. As the graphs in the testing section show it is possible to use this data
in order to perform later analysis. Additional logging capabilities for the robot are obtained by
using an independent GPS receiver which stores data to its own internal log which can then be
downloaded to a PC at a later point in time.

9.2.1.8 Con�guration Requirements

The requirements specify that the end user must be able to con�gure the control algorithms in
order to specify the desired heading, amount of time to run the program for and any parameters
which the AI algorithms may require. The PID controller allows the user to specify the desired
heading, amount of time to run, tacking angle and time to spend on each tack, whether or not
to unwind the sail when �nished and the proportional, integral and derivative gain constants.
The fuzzy logic controller allows all of the latter except for the gain constants as these are not
relevant to a fuzzy logic controller. It is possible to alter the fuzzy sets (which are e�ectively

67

the only parameters to the fuzzy logic controller) by editing a series of �les which contain data
tables.

9.2.2 Limitations of the current design

A number of limitations and problems exist within the current hardware and software designs.
Many of these centre around the di�culties of using two di�erent computing platforms connected
together via an RS232 port. Many are also as a consequence of the quality of the hardware being
used and re�ect the small budget available for this project as well as the fact that the boat is a
hand built prototype.

9.2.2.1 Stamp delays and communication problems

Many problems with the current design stem from the joint use of the Psion and Basic Stamp.
The �rst of these problems is the inter command delay problem where the Basic Stamp appears
to stop accepting new commands if it is issued two commands without a gap of at least a
second between them. This problem is exacerbated by the poor quality of the Psion's serial port
connector which can be knocked out of place very easily. Given the size and shape of the Psion,
its connector and the boat, the connector must be plugged into the Psion once it has been placed
inside the boat as it will not �t through the hole while connected. Once placed inside the boat it
is di�cult to connect and very easy to leave half connected. The use of a Jornada 720 was able
to address this problem, however the Jornada was an extremely tight �ght and ideally a smaller
PDA needs to be used.

9.2.2.2 Sail setting time

Another limitation of the current hardware and software designs is the amount of time taken to
set the sail. This can be as much as 10 seconds and is typically at least 5 seconds. This can
be considered both a limitation of hardware as the hardware is not capable of turning the sail
particularly fast, but it is also a limitation of software as the software attempts to turn the sail
far too often and could be improved by reducing this frequency and only moving it when large
moves are required.

9.2.2.3 Accuracy and repeatability of sensors and servos

The general accuracy and repeatability of the sensors and servos onboard the boat are present is
quite poor. This is especially true of the wind sensor and sail servo/position sensor, this results
in wide variations from second to second as the code is running which can cause the boat to move
without there being any visible reason for it to do so. In addition to this the compass heading
varies immensely as the boat tilts, the result being that as the boat turns the compass heading
is distorted causing either the desired heading to be overshot or undershot.

9.2.2.4 Wire wrapping around the mast

On the current hardware design a cable runs up the mast in order to connect the wind sensor
with the electronics inside the boat, unfortunately as the sail turns it wraps this wire around
the mast and can end up preventing the mast from turning. Although an unwind command was
implemented to counteract this, no code was implemented to keep track of how far the sail had
turned and whether or not the unwind command should be called. One possible strategy for

68

implementation might be for the basic stamp program to detect when the mast fails to turn and
to then issue an unwind command, another might be to keep track of the total distance turned
by the sail and when it reaches a given value to unwind it.

9.2.2.5 Lack of GPS

The current design does not fully support the use of GPS, as a result it is di�cult for the code
to tell if the boat is moving sideways or even backwards due to the force of the wind, tides,
currents etc. In order to implement GPS support within the current design support needs to be
added to the Basic Stamp and to the high level algorithms. One possible strategy is to actually
program a series of waypoints into the GPS receiver and then have the boat attempt to reach
each waypoint in turn with the GPS receiver only supplying the Basic Stamp with information
about the current bearing to the next waypoint and then using this information to determine
the desired heading.

9.2.2.6 Unintelligent tacking and jibing

When sailing the problem of turning onto the opposite tack so that the wind is now on the
opposite side of the boat requires the crew to either turn the boat towards the direction of the
wind and temporarily point the front of the boat directly towards the wind as they turn (known
as tacking) or turn the boat so that the rear of the boat points directly towards the wind during
the turn (known as a jibe). It is common practice only to jibe when the wind was already coming
from directly behind the boat, the jibe tends to be a far more violent maneuver as the boom on a
conventional boat will suddenly move itself by up to 180 degrees (often hitting crew members on
the head in the process!). The current code implementation does not take this into account and
will always take the maneuver requiring the smallest turn regardless as to whether this is a tack
or jibe, as the sail is �xed and cannot move itself (and there is no crew to be knocked out by a
rapidly moving boom) the violence of a jibe is reduced. An investigation needs to be undertaken
as to what if any advantages are gained for the sailing robot by always performing a tacking
maneuver unless the wind is coming from directly behind the boat. Should it be favourable to
do this, then the course setting code must consider the wind direction and whether the boat will
be turning through the wind when deciding which way to turn.

9.2.2.7 Simulator

The simulator's physics model is far from realistic, although it covers the basic principles of
sailing and will not allow the boat to sail directly into the wind it does a poor job at simulating
momentum or the e�ciency of di�erent sailing positions. An attempt has been made during this
project to simulate variable winds and the boat changing heading without rudder action, however
these are still quite basic models. Ideally the simulator could be based upon high quality physics
model which is based around the exact shape of the sailing robot, this is a similar approach
to that being taken by a number of modern �ight simulators which actually simulate air�ow
over a wing in order to determine �ight characteristics. Alternatively it could be based upon a
series of measurements regarding performance of the boat, these could be placed into data tables
which can then be used by the simulator to provide an accurate simulation, the problem with
this approach is accurately measuring the boat's performance and any behaviour which isn't
modelled will be unde�ned. If the accuracy of the simulator can be improved then it will greatly
aid the development of algorithms as it is far easier to test algorithms under the simulator than
on the robot itself. An additional limitation of the simulator is its unrealistic response times,
when setting a sail or rudder in the simulator the results are virtually instantaneous there is no

69

inter command delay and the sail will turn to any angle within a few milliseconds. Ideally this
needs to be slowed down to a rate comparable with the boat so that the algorithms will have to
deal with similar latencies in issuing commands.

9.2.2.8 Additional algorithm evaluation methods

As mentioned in section 7.2 the current algorithm evaluation methods fail to fully test if the
boat actually travelled in the desired direction, they only check that it travelled the course it
took e�ciently and examine how close it got to a goal position. If such methods are to be used
in automatic evaluations and systems which are able to self tune or even appear to learn then
more complex evaluation methods need to be devised.

9.3 If I was going to do it all again, what would I do di�erently?

9.3.1 Run all code on a single hardware platform

If this project were to be attempted again there are a few things which could have been done
di�erently. The �rst might be to strip down the code to its bare minimum and make it run entirely
inside the Basic Stamp thus eliminating all of the problems that inter-device communication
brought with it. However this may remove the ability to make use of calibration data tables
and require working directly in units which the sensors and servos understand, however the
calibration data would still be required in order to know what values to be using. It would also
remove the logging and simulation capabilities. Another possibility would be to use another low
cost microcontroller which featured slightly more memory than the Basic Stamp and allowed
most of the desired functions to be implemented and using a portable language such as C. A
third possibility is to use a high end microcontroller which can run Linux (or another POSIX
compliant operating system) and also interface with all of the hardware directly.

9.3.2 Serial Port interface to the simulator

The simulator su�ered from being too good in comparison to the actual robot, it responded much
quicker to commands and would generally do as it was told. If the simulator had been moved
to take commands via a serial port instead of a TCP/IP socket it would have provided a more
realistic interface in terms of latency and testing for serial communication issues thus giving the
simulator an equivalent role to the Basic Stamp. This may also remove the need to use a socket
at all within the higher level code thus reducing its size, complexity and improving portability
to operating-system less platforms.

9.3.3 Find a more suitable testing environment

All the real world testing was performed on a lake with full exposure to the elements, ideally
testing should have �rst been carried out in a less harsh environment. Although the code was
tested in the lab by using a fan and manually moving the boat around this was not su�cient to
�nd many bugs. What would have been more useful would either be a swimming pool or small
indoor tank with some fans (or even an open door on a windy day!) to simulate wind, this way
far more time could have been dedicated to performing a much more realistic level of testing.
Unfortunately no such setup was available!

70

9.3.4 Better GPS Logging

By relying on the logging features of the GPS accuracy is lost as some compression is applied
in order to reduce the amount of data stored, essentially the receiver only logs when it sees a
signi�cant change in the course. This reduces the sampling rate to a point which is far too low
to show many of the small movements which the boat performed, for instance the GPS plots (see
appendix N) show the course followed was virtually a straight line yet the heading/time plots (see
appendix O) show there was signi�cant oscillation. Unfortunately this caused many small moves
which the GPS is actually capable of logging from being shown by the GPS logs, for example
during the �rst test in the water the boat spun around several times yet this is not visible on
the GPS logs as the distance moved was too small to log. This could have been improved by
connecting the GPS to the Basic Stamp and recording its position at regular intervals into the
log�le for each journey. However this may have had a side a�ect of increasing the amount of
time between being able to alter the rudder or sail setting as additional load would be placed on
the Basic Stamp. If a better microcontroller could have been used then this might not be such
a problem.

9.3.5 Better Wireless Control

Initially wireless control was performed via an infra-red port, this only allowed for access at very
small distances although it did reduce the number of times the boat had to be taken apart. Later
tests were performed using an 802.11b wireless link running in peer to peer mode, unfortunately
when two systems running in peer to peer mode loose sight of each other and then regain sight
they often fail to re-establish a communications link as each system forms its own cell and once
a cell is formed other systems which have already formed their own cells do not change cells, the
only devices which will join such a network are new ones which have just booted up (or restarted
their drivers). The e�ect of this was to break communication between the boat and the laptop on
the shore once the boat sailed out of range. Had a wireless access point been used this problem
would not have occurred and communications would have re-established themselves when the
boat came within range of the laptop again, this could also be achieved without using a physical
access point as many wireless cards can emulate an access point using the Hostap software [43]
under Linux. Unfortunately the wireless cards available to this project (a Lucent Orinoco and
Bu�alo Airstaion) were not compatible with hostap and no hardware access point was available.
It is also likely that a hardware access point would have been capable of transmitting further as
most feature external antennas rather than the limited internal antennas of network cards.

9.3.6 Change the sail setting algorithm

The sail setting algorithm currently attempts to set the sail based upon the current wind direc-
tion and heading every time the main loop is executed. This proved to be exceptionally time
consuming as the slightest change in either heading or wind could cause the sail to move and given
the poor quality of the sail setting hardware this required several seconds. A better approach
would have been to only attempt to set the sail every 20 or 30 seconds and when doing this to
set the sail for the desired heading not the current heading. As the boat maybe oscillating from
its desired course constantly moving the sail to a setting appropriate for the current course will
only help to worsen the oscillation as it both increases the amount of time taken to compensate
(as the rudder and sail cannot be moved simultaneously) and as the action of turning the sail
actually causes the boat to turn. Doing this may add a small amount of complexity to the sail
setting algorithms as the wind direction is currently measured in terms of the boat's present
heading and in order to set the sail according to the desired heading the wind direction must
also be expressed in terms of the desired heading and not the current heading.

71

9.4 Possible directions for future work

9.4.1 Hardware Improvements

A number of limitations were found with the current boat and its on-board hardware, several of
these caused di�culties in creating e�ective control software. This section outlines some of the
hardware problems which have been encountered and possible solutions to them.

9.4.1.1 Improved Power Source

The boat's power supply currently consists of two lead acid batteries, these are estimated to be
able to provide approximately 12-36 hours of continuous operation[44]. While more than ample
for simple in-shore testing, this is not suitable use in a system for long term operation. Any such
system would most likely need to employ solar panels coupled with on board batteries. Another
possibility is to use some kind of energy recovery strategy similar to regenerative breaking in
hybrid cars or kinetic watches, such a system could take advantage of movements caused by
waves.

9.4.1.2 Improved Sensor and Servo Accuracy

A major problem throughout the project was the accuracy of the sensors and servos, in partic-
ular the sail servo/position sensor and wind sensor. Such inaccuracies made it very di�cult to
choose an appropriate course or to set the sail correctly, this resulted in the boat either sailing
ine�ciently, not sailing at all or being pushed o� course by the wind. If these problems could
be prevented then course accuracy could be greatly improved and the boat would be able to sail
more e�ciently and go where it had been told to go.

9.4.1.3 Larger Sail size

The sail used on this boat is not particularly e�cient as a result of its small width, this size was
chosen in order to prevent the boat getting out of control and capsizing. Any production robot
would need to have a reasonable size sail, however at the same time the software would need to
understand the need to deliberately reduce sailing e�ciency during high winds in order to reduce
strain on the sail and prevent the boat from capsizing. This is especially important when sailing
close to the wind as sailing vessels tend to lean over when sailing in this manner.

9.4.1.4 Larger Boat size and shape more suited to sea conditions.

Given the current boats small size it is unlikely to be able to sail e�ectively in storm conditions
at sea, making it unusable for use as a replacement to data buoys. In order to solve this problem
the entire boat would need to be scaled to a suitable size, however this should not require any
major changes to the software.

9.4.1.5 Fault Detection and Redundancy

A key need when operating a sailing robot in open waters is that of survivability. This is both
in terms of surviving faults and surviving the elements (which may cause faults in the onboard
hardware). In order to counter any hardware faults they must �rst be detected. Fault detection
can take place through a number of di�erent techniques, these include sensors that will detect

72

faults such as irregular outputs from electrical circuits, leaks and non-moving servos. Faults
detection can also work on the principle of checking for responses from hardware, for instance
if one CPU is unable to get a response from another then it can be assumed that a fault has
occurred either in the other CPU or the circuits linking them.

A system commonly adopted for fault tolerance in safety critical systems such as aircraft and
industrial control systems is that of redundancy. In such systems odd numbers of CPUs (often
of di�erent architectures) are tasked with the same role and their outputs are connected to some
kind of voting mechanism which then carries the majority decision. If a CPU fails in such a system
then it is still possible to operate the system using the remaining processors. It is also common
to implement multiple actuators especially in aircraft systems, in this case each processor may
be connected to several actuators each of which is su�ciently capable of performing the role on
its own. Within the context of a sailing robot such systems could be implemented as multiple
servos, multiple microcontrollers and possibly even multiple masts/sails and multiple rudders.
There would also be the need for sensors to verify which of these was working, in the event of
failure it maybe possible for the boat to alert some kind of control centre via a long distance
radio or satellite link so that pickup (or having the boat sail home) and repair can be arranged.

9.4.1.6 Scienti�c Instrumentation and access to data

The current robot includes no scienti�c instrumentation such thermometers, barometers, sonars
etc which can be used to perform some kind of useful data gathering. In order to be of any use
to oceanographers, meteorologists, marine biologists, environmentalists etc such data must be
recorded and both the hardware and software must support it and ideally be able to transmit
data at regular intervals. Possible instruments might include thermometers, barometers, �sh
�nders, hydrophones and water analysis equipment. In order to improve the usability of data
from hydrophones it would be useful to be able to classify noises in order to determine the type
of sound and if made by an animal the species of animal and number of animals, this could
then be combined with data from other boats in order to triangulate the position of any animals
detected. Preliminary work in using neural networks to classify such sounds has already been
undertaken by Howell , Wood and Koksal (2003) [45]. Ideally the data being received from a
series of sailing robots could be placed on the Internet in an open and portable format such
as XML. This approach is currently being taken by the United States National Oceanic and
Atmospheric Administration (NOAA) for weather data [46]. In doing this scientists from a
variety of disciplines would be able to access and make use of the data from a network of sailing
robots helping to reduce the number of observation systems required and increasing the amount
of science which can be performed.

9.4.1.7 Navigation

At present the robot's only navigational aid is a compass, although this allows it to follow a
speci�ed heading it does nothing to detect lateral forces such as ocean currents which may move
the boat without altering its heading. In order to either keep a �xed position or sail a long
distance course some form of positional information will be required, this most obvious way to
obtain such information is via GPS. Given the present hardware and software it would not be
di�cult to add GPS support, all that is required is for a GPS receiver to be connected to the
Basic Stamp and for code to be written to obtain an NMEA string from it via the Basic Stamp
and process this string on the Psion. Given this data it would be possible to determine how far
the robot is from a designated point and to generate a bearing to that point and feed this into
the existing heading error detection code.

73

9.4.1.8 Communications

In order to prove of use to any kind of remote monitoring or multi-robot based application
it will be necessary to place some form of communications equipment on-board. Perhaps the
most obvious choice is a satellite modem to allow for communications regardless of location,
for coastal operations it maybe possible to substitute this for terrestrial systems such a GSM
Mobile Phone using a GPRS packet radio link. For inter-robot communication some form of
high bandwidth, point-to-point, low latency and low cost system would be desirable depending
on the exact distance required wireless networking systems such as 802.11 (WI-FI) or 802.16
(WIMAX) might be practical. Such systems would also be highly useful for testing scenarios as
large amounts of telemetry data can be sent in realtime and instructions can be issued to the
robot in order to recover it from problem situations such as it loosing its tether and sailing in
the wrong direction!

9.4.2 Software Improvements

9.4.2.1 Improved concurrency and modular design

The current software implementation makes no attempt to implement any concurrency, all com-
mands are issued in series with each command waiting for the previous one to �nish before taking
place. If a concurrent system were implemented then it would be possible to be performing a
turn while positioning the sail or taking a wind reading, this would greatly reduce the amount of
time taken to perform a maneuver and would most likely increase the accuracy at which a course
could be sailed. It would also be vital for allowing for communications, navigation and scien-
ti�c readings to be taken without disrupting the ability to sail during the same time. However
implementing concurrency greatly increases the complexity of the software and would require
a complete rewrite of the Basic Stamp code if a Basic Stamp were being used, it would be far
simpler to implement concurrency on a single microcontroller system that had both the process-
ing power of the Psion and the I/O facilities of the Basic Stamp. Given a concurrent system it
would be possible to split the system into a number of di�erent software modules which could
run concurrently, these could include keeping the boat on its desired heading, setting the sail
correctly, logging scienti�c data, communications and performing navigation (and feeding the
results of this into the steering algorithm).

9.4.2.2 Self Tuning Algorithms

Perhaps the biggest limitation of the current implementation is that the algorithms must be
manually tuned. A number of techniques exist which can be used to tune and re-tune both PID
and fuzzy logic controllers. It is possible to automatically apply the Zeigler and Nichols ultimate
cycle method or to use a genetic algorithm [47] to tune a PID controller where each of the gain
constants is evolved using a genetic algorithm with the �tness function giving the best weighting
to the values which cause the least oscillation in the system. Similar techniques also exist for
fuzzy logic controllers [48, 49] and these work by altering the set boundaries as and when they
are required. In order for such systems to work on a sailing robot it is necessary to constantly
measure the course (or perhaps speed) of the boat either through GPS or a compass in order to
detect if the algorithm has correctly tuned itself or not and to feed this information back into
the tuning process.

The algorithm evaluation methods developed for this project could also be used to form the
basis of a �tness function for a genetic algorithm. Genetic algorithm based tuning could also be

74

undertaken by beginning the training phase within a simulator and then moving onto the robot
after the initial training phase is complete, a similar system has successfully been used by Walker
and Wilson (2002) [50] using a wheeled Kephera robot. However in order to achieve this with a
sailing robot the simulator accuracy needs to be greatly improved. Such techniques may allow
the system to adapt to changes in its sailing characteristics which may result either from damage
or stormy weather. For example if the rate of turn was reduced by strong currents then the
proportional constant could be increased resulting in larger rudder movements to compensate
for the strong currents.

9.4.2.3 Improving adaptability and survivability with Biologically inspired tech-
niques.

In addition to self-tuning algorithms it maybe desirable to introduce biologically inspired survival
instincts into the system to allow it to cope better with extreme situations and in particular
situations which were not conceived by the system designer. A possible application for this could
be in the conservation of battery power, when power is low the boat can react in a similar way to
animals rationing their food as supplies run low, as power levels drop non-vital systems such as
communications and navigation are shutdown and power to other systems is reduced (possibly by
making steering movements less frequently or making smaller moves until power levels increase).
In addition to survivability there is the potential to use biologically inspired techniques to improve
adaptability, it is possible to treat the boat like the body of an animal and when it is damaged
(the equivalent of harm, injury or infection in biological terms) then an appropriate anti-body is
released these anti-bodies take the form of corrective actions such as changing tack so that water
does not spill in through a leak on a particular side of the boat, deploying pumps to remove
water or shutting down replicated systems in order to prevent damaged electronics interfering
with the rest of the system. Additional possibilities such as swarm behaviours maybe useful in co-
ordinating a number of boats to perform a single mission between them. Despite the possibilities
of such biologically inspired techniques their bene�t must be considered against the bene�ts of
simpler more traditional control systems which are likely to be cheaper and easier to implement
as well as more predictable in their responses.

9.4.2.4 Weather Awareness

If being operated on an open sea it maybe desirable depending on the exact mission requirements
to avoid storms. In order to achieve this the boat must know where the storm is in relation to
itself and which direction to move in. Such information could either be gathered directly by the
robot itself, perhaps through RADAR or visual systems or it can be supplied remotely to the
robot from weather satellites. There may also be the need to reverse this process and have the
boat deliberately sail into storms in order to study them.

9.4.2.5 Use of new cross compilation systems

Since the start of this project several new systems have emerged for cross-compiling code for a
Linux environments. The most notable being embedded Gentoo [51] and the T2 project [52].
Both of these are systems which aim to cross-compile a complete installable Linux distribution
for a given host architecture and allow the user to select any of thousands of available programs
to be placed into that distribution. This is a logical step on from the uClibc/uClinux build
system which only features a very narrow set of core applications by default and requires the
user to manually cross-compile any additional applications that they may require. The use of
such systems would have greatly eased the creation of a suitable Linux distribution given that

75

a great amount of time was spent cross-compiling applications which were not available from
uClibc's build system (or which refused to compile using it, e.g. cardmgr the PCMCIA card
manager and depmod the kernel module dependencies calculator).

9.4.3 Fleet Management and Telecommunications

Many of the possible applications for a sailing robot involve the use of multiple robots. In such
scenarios it will be necessary to manage the �eet either through a centralised system or by having
the robots communicate and co-ordinate amongst themselves. This would obviously require long
distance communication systems and ideally GPS navigation on each robot as discussed in section
9.4.1.8. Currently most data buoy networks such as TOA and TRITON are organised in grid
patterns, therefore it would seem logical that the �eet management system would be able to co-
ordinate a group of sailing robots to form themselves into a grid pattern over a large area such
as the South Paci�c. Such a system should also be able to reorganise the grid pattern should
a single robot fail, it would be possible to reorganise the grid to avoid a single large gap and
increase the distance between each robot slightly allowing for a graceful degradation of the group
of robots rather than leaving signi�cant gaps as currently occurs in �xed data buoy networks.
It would also be useful for such �eet management systems to be able to increase or decrease the
distance between robots, move the entire �eet to another area or have individual members of the
�eet move around or return home.

9.4.4 Collision Avoidance

Any sailing robot which is going to be moving upon the open sea or more importantly in coastal
waters will need to avoid collisions with other vessels, animals, the shore, the sea bed and
submerged hazards such as wrecks. The current implementation makes no attempt at all to
avoid such collisions. There are several ways in which the risk of collision can be reduced,
onboard sensors can be used to detect nearby objects and alter the boat's desired course to
avoid them or the boat can be equipped with �knowledge� about the world which it can then
reference against its current GPS position. Such knowledge might include databases from ocean
surveys showing sea depth, the location of the coastline and the location of exclusion areas such
as military test ranges, wildlife reserves, shipping lanes etc.

9.4.4.1 Detecting imminent collisions via World Models and Geographical Infor-
mation Systems

As previously stated collisions can be prevented by storing information about hazardous areas
which must be avoided. This could possibly be done by using a Geographical Information
System which contains di�erent layers of information, such layers might include the location of
the coastline and no-go areas like shipping lanes. By using such information, if the robot senses it
is nearing such an area then it can adjust its course to avoid the collision. This can be compared
to so called softwall systems being developed for aircraft which prevent them from passing into
certain restricted areas such as the centre's of major cities.

9.4.4.2 Detecting Collisions via realtime sensors

Collision detection via Geographical Information Systems will never be capable of avoiding col-
lisions with dynamic parts of the environment such as ships, animals and even shifting sand
banks. In order to avoid collisions with such objects some form of onboard sensing system will
be needed, such sensors could take a number of forms. The most obvious method for avoiding

76

collisions with surface objects is to use RADAR, however RADARs tend to be expensive, bulky
and may su�er problems in heavy seas as all the radar will be able to see is the few metres around
the boat before a wave obscures its view. A possible alternative might be some form of visual
sensor using onboard cameras and possibly night-vision equipment, however visual systems also
su�er in heavy seas, at night and in heavy rain or fog. In addition to detecting surface hazards it
may be necessary to detect underwater hazards, especially if the robot is being used in shallow
waters. The most obvious technique for detecting underwater hazards is active SONAR, however
visual systems may also be appropriate. Passive SONAR, also known as hydrophones may also
be helpful especially for detecting nearby animals by listening for their sounds and using multiple
hydrophones to detect the direction. Hydrophones may also aid the detection of nearby ships
or any other hazard which creates noise in the water, they may also be helpful in ful�lling an
oceanography role as they may help to detect underwater seismic events.

If many robots are being used in close proximity to each other then it is possible that they may
be able to inform each other of the locations of hazards or at least provide information which may
lead to accurately determining the location of a hazard. For example if there is a ship in between
two sailing robots and they both report the direction at which they sense it, by knowing each
other's location (via GPS) then it should be possible for both robots to estimate the location of
the ship. One problem with this approach is that the information requires constant updating,
if the same situation is detected 10 minutes later then it is di�cult to determine if its the same
ship or a new one, additionally the robots need to be able to tell the di�erence between a ship
and an island or some other static object. Ultimately a good collision avoidance system will
bring together knowledge from a variety of sensors, other robots and static knowledge about the
world.

9.5 Conclusion

This project has shown that it is possible to achieve some level of control over a sailing robot
using only low cost o� the shelf PDA and simple microcontroller, however it has also identi�ed
the complexity of this task and shown that achieving a usable system will take a vast amount
of time and �ne tuning. Two di�erent control strategies, a PID controller and a fuzzy logic
controller have been proven to work e�ectively at controlling a simulated boat. This project has
also succeeded in creating a framework for implementing more complex control strategies and a
simulator in which they can be tested. Further work is still required to improve the accuracy of
the simulator, the response times of the control algorithms and the robustness of the hardware.

77

Glossary

802.11
A series of standards for wireless networking operating in the unlicensed 2.4ghz frequency band.
Typically it is possible to achieve distances of several hundred metres or more when specialist
antennas are used.
ARM
A common type of CPU often (but not exclusively) used in embedded applications including the
Psion and Jornada PDAs.
ASC
Autonomous Surface Craft, a �oating vessel which is able to control itself without human inter-
vention.
AUV
Autonomous Underwater Vehicle, an underwater vehicle such as a submarine which is capable
of controlling itself without human intervention.
Bluetooth
A short distance wireless communication system intended to replace data cables for devices such
as printers and mobile phones. It is possible to run a TCP/IP network over bluetooth and to use
it over ranges of several hundred metres making it a possibility for con�guring and controlling a
robot remotely.
Compact Flash
A small memory storage card measuring about 2cm x 3cm. Able to function as an alternative
to a hard disk drive, capacities range from 1 megabyte to 8 gigabytes.
CORBA
Common Object Request Broker Architecture, an object-oriented system for communicating
objects between di�erent programming languages.
DBCP
Data Buoy Co-operation Panel. A multi-national group co-operating on a number of data buoy
related issues including safety and design.
EEPROM
Electronic Erasable Programmable Read Only Memory. A type of memory chip who's contents
can be reprogrammed electronically. Such memory is used on the Basic Stamp to store the
current program.
EGOS
European Group on Ocean Stations.

78

EPOC
The operating system supplied on Psion PDAs, a newer version known as Symbian is also found
in many modern mobile phones.
GCC
Gnu Cross Compiler, a suite of open source compilers with the ability to build executables for
other platforms. For example building executables for an ARM processor from a system with an
Intel processor inside it.
GOOS
Global Ocean Observing System, a global network of sensors monitoring the state of the worlds
ocean's.
GPS
Global Positioning System, a network of satellites which transmit time signals allowing a receiver
to detect its position within a few metres.
Hydrophones
A system for listening to noises in the water using microphones, sometimes known as passive
sonar. If multiple directional sensors are used then it is possible to determine the direction of a
given noise, if sensors are placed in multiple locations then an approximate location of a noise
can be detected via triangulation.
IIOP
Internet Iter ORB Protocol, A system for transmitting CORBA objects via the internet.
IrDA
Infra-Red Data Association, a standard for allowing computer equipment to communicate via
infra-red.
Linux
An open source Unix like operating system kernel. Started in 1991 by Linus Torvalds and now
available for most computing platforms.
NetBSD
Another open source Unix like operating system. Based upon the original BSD Unix, NetBSD
aims to o�er a highly portable architecture allowing it to run on virtually any computing platform.
PCMCIA
Personal Computer Memory Card International Association, a standard for credit-card sized
memory cards for handheld and laptop PCs. Often used for expansion cards such as network
cards, modems etc.
NMEA
National Marine Electronics Association, A standard interface for GPS receivers which produces
a human readable string representing the current location.
NOAA
The United States National Oceanic and Atmospheric Administration. An organisation respon-
sible for oceanography, meteorology and similar sciences in the USA. NOAA are responsible for
a large number of data buoys worldwide.
PDA

79

Personal Digital Assistant, a general term for small handheld computers such as the Palm Pilot,
Psion and Jornada.
PIRATA
Pilot Research Moored Array in the Tropical Atlantic, a network of data buoys in the centre of
the Atlantic ocean.
POSIX
Portable Operating System Interface, a set of common functions for operating systems to im-
plement. Theoretically a program written to POSIX standards can be compiled and run on any
POSIX compliant operating system without modi�cation.
PWM
Pulse Width Modulation, a technique to encode data to/from hardware devices via the amount
of time a signal is high. PWM is used by many of the hardware components such as compass in
the sailing robot.
RPC
Remote Procedure Call, a generic term for calling a computer program running on a remote
system or using techniques which would allow remote communication but on the same system.
RS-232
A standard for serial communications, most PCs, laptops, PDAs and some microcontrollers
including the Basic Stamp.
SDK
Software Development Kit, a term for a suite of programs to aid developers for a given system.
TCP/IP
Transmission Control Protocol/Internet Protocol. The standard protocol for communicating
data via the internet, TCP/IP can also be used for two programs running on the same system
to communicate with each other via a system known as a loopback network.
TOA
Tropical Atmosphere Ocean project, a system to deliver real time data from the paci�c ocean in
order to monitor the El Niño and La Niña.
TOGA
Tropical Ocean Global Atmosphere, part of the World Climate Research Program. Aimed at
studying rapid changes in the ocean conditions such as El Niño and La Niña.
TRITON
Triangle Trans-Ocean buoy Network, a network of data buoys operating in Western paci�c by
the Japan Marine Science and Technology Center (JAMSTEC).
uClibc
A highly optimised (in terms of size) standard C library for use with the uClinux distribution.
It is targeted at embedded applications and o�ers a cross-compiler to recompile any programs
for the target system. Programs compiled for uClibc will not run on systems using the standard
glibc and vice-versa.
uClinux

80

A linux distribution based around uClibc, it mostly consists of a program known as busybox
which provides virtually all common unix command line utilities compiled into a single exe-
cutable. It o�ers a few extra packages for programs which are not part of busybox such as
wireless tools and cardmgr the PCMCIA con�guration utility.
Userspace
A term to describe normal user programs running on a Unix or Linux system. The reverse of
this is kernel space which refers to programs which run as part of the operating system kernel.

81

Bibliography

[1] Operation and achievements of the dbcp. Technical report, Data Buoy Co-operation Panel,
2005.

[2] Halloran P Bisbee, J and N. Larkin. Sailing and the Tech Dingy - Instruction Manual.
Massachusetts Institue of Technology, Cambridge, MA, USA, 1995.

[3] C. Kilian. Modern Control Technology: Components and Systems, chapter 11, pages 361�
409. Number ISBN: 076682358X. Delmar Thomson Learning, 2002.

[4] H. Diamond. The united states detailed national report on systematic observations for
climate: United states global climate observing system (us-gcos) program. Technical report,
National Oceanic and Atmospheric Administration, 1335 East-West Highway, Room 7214,
Silver Spring, Maryland, USA, 20910, 2001.

[5] A. Hageberg. Report on the egos management committee meeting. Technical report, Euro-
pean Group on Ocean Stations, Christian Michelsen Research AS, P.O. Box 6031 Postter-
minalen. N-5892 Bergen, Norway, 2001.

[6] The ship of opportunity program. http://www.brest.ird.fr/soopip (Accessed on May 2nd
2005).

[7] M et al McPhaden. E�ects of �shing activity on tropical moored buoy arrays.
http://www.dbcp.noaa.gov/dbcp/�shing_e�ects.zip (Accessed on May 2nd 2005).

[8] United kingdom report on systematic observations for climate for the global climate ob-
servation system. Technical report, Department for Environment, Food and Rural A�airs,
Nobel House, 17 Smith Square, London, SW1P 3JR, UK, 2001.

[9] Us launch vehicle data - cost estimating web site.
http://www.jsc.nasa.gov/bu2/ELV_US.html (Accessed on May 2nd 2005), 2004.

[10] J. Abril, J. Salmon and O Calvo. Fuzzy control of a sailboat. International Journal of

Approximate Reasoning, 16(3-4):359�375, April - May 1997.
[11] B Ross. Robot boat project. http://www-2.cs.cmu.edu/�br/CbotWeb/rb98.html (Accessed

on May 2nd 2005), 1998.
[12] T.W. Vaneck. Fuzzy guidance controller for an autonomous boat. IEEE Control Systems

Magazine, 17(2):43�51, 1997.
[13] C. et al Goudey. A robotic boat for autonomous �sh tracking. MTS Journal, 32(1):47�53,

1998.
[14] Massachusetts Institue of Technology. Auv laboratory at mit sea grant.

http://auvlab.mit.edu/ (Accessed on May 2nd 2005).

82

[15] R. Rocca. Roboat. Circuit Cellar, Issue 115:32, Feb 2000.
[16] R. Steidley, C. Bachnak and W. Lohatchit. Developing a remote controlled vehicle for

environmental studies. 2004.
[17] A. Steidley, C. Sadovski and R. Backnak. Intelligent systems integration for data acqui-

sition and modeling of coastal ecosystems. Innovations in Applied Arti�cial Intelligence,
11b(3):1112�1122, 2004.

[18] M. S. Triantafyllou and G.S. Triantafyllou. A e�cient swimming machine. Scienti�c Amer-

ican, March 1995:40�48.
[19] Papadopoulos E. Tzeranis, D. and G. Triantafyllou. On the design of an autonomous robot

�sh. In Proc. 11th IEEE Mediterranean Conference on Control and Automation, (MED

'03), 2003.
[20] G. et al Gri�ths. Open ocean operation experience with the autosub-1 autonomous underwa-

ter vehicle. In Proceedings of the Unmaned Untethered Submersible Technology Symposium,

New Hampshire, USA, August 1999.
[21] A. J. Healey and D. B Marco. Command, control and navigation: Experimental results

with the nps aries auv. IEEE Journal of Oceanic Engineering, 26(4):466�477, 2001.
[22] J. Turton. Argo 2002: Progress towards a global array of pro�ling �oats. Sea Technology,

44(10):33�36, 2003.
[23] R. et al Bachmayer. Underwater gliders: Recent developments and future applications. Pro-

ceedings of the IEEE International Symposium on Underwater Technology (UT'04), Tapei,

Taiwan, 2004.
[24] Bellingham J Catipovic J. Curtin, T.B and D. Webb. Autonomous oceanographic sampling

networks. Oceanography, 16(3), 1993.
[25] Monterey Bay Aquarium Research Institute. Mbari - autonomous ocean sampling networks.

http://www.mbari.org/aosn/ (Accessed on May 2nd 2005).
[26] C. Aartijk, M. Taliola and P. Adriaans. The robosail project. In Proceedings of European

Conference on Arti�cial Intelligence, pages 653�657, RoboSail Systems BV, Waterlandlaan
120, 1441 RW Pu, 2002. Robosail Systems.

[27] Smart boat corporation. http://www.smartboat.com/ (Accessed on May 2nd 2005).
[28] Arti�cially damaged triton buoy - photo record. http://www.jamstec.go.jp/jamstec/TRITON/

(Accessed on May 2nd 2005), 1999/2000.
[29] S. Showalter. The legal status of autonomous underwater vehicles. The Marine Technology

Society Journal, 38(1):80�83, 2004.
[30] Basic stamp 2sx module. http://www.parallax.com/detail.asp?product_id=BS2SX-IC (Ac-

cessed on May 2nd 2005).
[31] Psion Series 5mx Users's Manual. Psion Inc, 150 Baker Avenue, Concord, MA 01742, US.
[32] Palm One, 400 N. McCarthy Blvd. Milpitas, CA 95035, USA. Handbook for the Palm m100

Handheld.
[33] The netbsd project. http://www.netbsd.org (Accessed on May 2nd 2005).

83

[34] The linux kernel archives. http://www.kernel.org/ (Accessed on May 2nd 2005).
[35] The openpsion project linux for psion computers. http://www.openpsion.org (Accessed on

May 2nd 2005).
[36] D Kegel. Building and testing gcc/glibc cross toolchains. http://kegel.com/crosstool/ (Ac-

cessed on May 2nd 2005).
[37] uclibc - a c library for embedded linux. http://www.uclibc.org (Accessed on May 2nd 2005).
[38] T. Kuusela and Brockmann S. The tracksail project. http://tracksail.sourceforge.net (Ac-

cessed on May 2nd 2005), 2002.
[39] Daventech Ltd. Cmps03 - robot compass module. http://www.robot-

electronics.co.uk/htm/cmps3doc.shtml (accessed on May 2nd 2005).
[40] The familiar project. http://familiar.handhelds.org/ (accessed on May 1st 2005).
[41] Gumstix - �nally a pack of very small linux machines. http://www.gumstix.org/ (Accessed

on May 2nd 2005).
[42] The lart pages. http://www.lart.tudelft.nl/ (Accessed on May 2nd 2005).
[43] J. Malinen. Host ap driver for intersil prism 2/2.25/3, hostapd, and wpa supplicant.

http://hostap.epitest.�/ (accessed on May 2nd 2005).
[44] M. Neal. A hardware proof of concept for a free sailing robot for oceanic observation.

(unpublished). Journal of Oceanic Engineering, 2005.
[45] Wood S. Howell, B.P. and S. Koksal. Passive sonar recogition and analysis using hybrid

neural networks. Proceedings of IEEE Oceans 2003, 2(22-26):1917�1924, 2003.
[46] National Oceanic and Atmospheric Administration. Experimental national digital forecast

database xml web service. http://weather.gov/xml/ (Accessed on May 2nd 2005).
[47] I. Gri�n. On-line pid controller tuning using genetic algorithms. Master's thesis, Dublin

City University, 2003.
[48] G. Tan and H. Xiheng. More on designing fuzzy controllers using genetic algorithms: Guided

constrained optimisation. 1997.
[49] J. Foran. Optimisation of a fuzzy logic controller using genetic algorithms. Master's thesis,

Dublin City University, 2002.
[50] J. Walker and M. Wilson. How useful is lifelong evolution for robots? In In: From Animals

to Animats 7, Proceedings of the 7th International Conference on the Simulation of Adaptive

Behaviour (SAB-02), 2002.
[51] The Gentoo Foundation Inc. Gentoo linux projects - embedded gentoo.

http://www.gentoo.org/proj/en/base/embedded/index.xml (accessed on April 30th
2005).

[52] The t2 project. http://www.t2-project.org/index.html (accessed on April 30th 2005).
[53] C.P. Summerhays. Goos moves into implementation. Sea Technology, August 1997.
[54] Flemming. Making the case for goos. Sea Technology, January 1995.
[55] S. Hansen. Sea watch - connecting to goos. Sea Technology, February 1995.
[56] S.R. Piotrowicz. Toga observing system and goos. Sea Technology, August 1997.

84

85

Appendix A

Diagrams and Photos showing a
detailed design of the robot.

fo
am

fo
am

vo
id

vo
id

vo
id

vo
id

co
m

pa
ss

co
m

pa
rt

m
en

t
ba

tt
er

y
co

nt
ro

l
bo

x ru
dd

er
 s

er
vo

sa
il

m
ec

ha
ni

sm
sw

itc
h/

G
PS

 co
m

pa
rt

m
en

t
ac

ce
ss

 h
at

chm
ai

n
ac

ce
ss

 h
at

ch
co

m
pa

ss

ru
dd

er
 tu

be
G

PS
 re

ci
ev

er

ke
el

m
ild

 s
te

el

ke
el

 b
la

de

w
el

d

w
el

d

an
gl

ed
 p

la
te

th
ic

ke
ne

d
ep

ox
y

pu
dd

le
d

ep
ox

y pl
as

tic
 s

ki
n

pl
yw

oo
d

ce
nt

re
lin

e
fo

rm
er bo

lts
sa

il
m

ec
ha

ni
sm

m
ou

nt
in

g
pl

at
e

ke
el

 to
 s

ai
l

m
ec

ha
ni

sm
at

ta
ch

m
en

t

ke
el

as
se

m
bl

y

m
ild

 s
te

el
ke

el
 b

la
de

st
ee

l t
ub

e
bo

lte
d

 t
o

bl
ad

e le
ad

pl
ug

le
ad

pl
ug

sa
il

dr
iv

e
el

ec
tr

on
ic

s

w
in

g
tip

de
ta

il

w
in

d
va

ne
sl

ot
te

d
sh

af
t

po
te

nt
io

m
et

er

tip
 o

f a
lu

m
in

iu
m

ae
ro

fo
il

pl
as

tic
pi

lla
r

ap
pr

ox
im

at
e

ae
ro

fo
il

sh
ap

e

m
ild

pi
lla

r r
et

ai
ni

ng
 s

cr
ew

Figure A.1: Diagram showing the parts of the boat in detail. Courtesy of Dr. Mark Neal.
86

Appendix B

Paper protractor used for calibration
measurements

Figure B.1: The protractor which is placed around the mast in order to calibrate the sail.

87

Appendix C

Original protocol design as supplied by
Dr. Mark Neal.

Commands:

SRD x : set rudder position reply: null

SSL x : set sail position reply: null

SLP x : go to sleep for x seconds reply: null

Updates:

UGP : switch on and update GPS position reply: null

UWS : switch on and update wind sensor values reply: null

UCH : switch on and update compass reading reply: null

Transmit Requests:

GWS : get wind sensors reply: a b : sensor readings for the two strain gauges

GCH : get compass heading reply: a : compass heading

GPN : get GPS Northing reply: complex_string

GPW : get GPS Westing reply: complex_string

GSL : get sail position reply: a : sail position

GRD : get rudder position reply: a : rudder position

GBT : get battery voltage reply: a : battery voltage

88

GCX : get custom sensor reading reply: a : unknown (to be logged and inspected later)

All packets are the same length. All will be formatted text for readability. Packet out from Palm
will be three characters specifying command and one character of data. All replies will be ten
characters. Interpretation to be performed at each end.

Examples from Palm:

SRD

Will tell the Stamp to set rudder to position 34 (ASCII for)

UGP!

Will tell Stamp to start-up the GPS and store it's current reading ready for transmission to the
Palm. ! will be ignored.

GBT!

Will cause Stamp to send back the battery voltage. ! will be ignored.

Examples from Stamp:

Upon receiving GBT! form Palm the Stamp will transmit a ten character packet:

t!!!!!!!!!

t is the value 116. This will signify a particular battery voltage.

Upon receiving GPN! from Palm the Stamp will transmit:

N05223.848

which is a valid Northing from the GPS. This requires all 10 characters.

89

Appendix D

Di�erences between original Basic
Stamp code and �nal version.

! indicates a changed line
- indicates a removed line
+ indicates a new line

*** newcontrol.bs2.orig 2005-04-22 19:48:05.000000000 +0100

--- newcontrol.bs2 2005-04-22 20:02:24.000000000 +0100

*** 1,14 ****

'{$STAMP BS2sx}

- winda CON 0 ' Constants defining locations in scratchpad for state information

- windb CON 1

compass CON 2

- northing CON 3

- westing CON 13

rudder CON 23

sail CON 24

- battery CON 25

- custom CON 26

n96n CON $40F0 ' Constant defining 9600 no parity serial comms

--- 1,8 ----

*** 19,60 ****

outpacket VAR Byte(10)

elapsed VAR Word

avg VAR Word

! tmp VAR Word

DEBUG "firing up", CR

start:

SERIN 0, n96n, [STR inpacket\4]

DEBUG STR inpacket\4,CR

! IF (inpacket(0) = "S") THEN SETACTS

! IF (inpacket(0) = "G") THEN SENDDATA

! IF (inpacket(0) = "U" AND inpacket(1) = "G" AND inpacket(2) = "P") THEN RUNGPS

! IF (inpacket(0) = "U" AND inpacket(1) = "W" AND inpacket(2) = "S") THEN RUNWIND

! IF (inpacket(0) = "U" AND inpacket(1) = "C" AND inpacket(2) = "H") THEN RUNCOMPASS

! GOTO start

! SETACTS:

- ' DEAL WITH SETTING SERVOS AND SLEEP

- SEROUT 1, n96n, ["!!!!!!!!!!"]

! IF (inpacket(1) <> "R") THEN NOTRUD

SEROUT 10, n96n, [255, 0, inpacket(3)]

PUT rudder, inpacket(3)

! DEBUG "set rudder servo: ", DEC inpacket(3), CR

! GOTO start

!

! NOTRUD:

! IF (inpacket(1) <> "S") THEN NOTSAIL

90

HIGH 4

PAUSE 1

--- 13,60 ----

outpacket VAR Byte(10)

elapsed VAR Word

avg VAR Word

! max_elapsed VAR Word

! min_elapsed VAR Word

DEBUG "firing up", CR

start:

+ DEBUG "back at start", CR

+

SERIN 0, n96n, [STR inpacket\4]

DEBUG STR inpacket\4,CR

! IF (inpacket(0) = "S" AND inpacket(1) = "S" AND inpacket(2) = "L") THEN SETSAIL

! IF (inpacket(0) = "S" AND inpacket(1) = "R" AND inpacket(2) = "D") THEN SETRUD

! IF (inpacket(0) = "S" AND inpacket(1) = "U" AND inpacket(2) = "W") THEN SETUNWIND

! IF (inpacket(0) = "G" AND inpacket(1) = "W" AND inpacket(2) = "S") THEN GETWIND

! IF (inpacket(0) = "G" AND inpacket(1) = "C" AND inpacket(2) = "H") THEN GETCOMPASS

! IF (inpacket(0) = "G" AND inpacket(1) = "S" AND inpacket(2) = "L") THEN GETSAIL

! IF (inpacket(0) = "G" AND inpacket(1) = "R" AND inpacket(2) = "D") THEN GETRUD

! GOTO start

!

!

! 'set the rudder

! SETRUD:

!

SEROUT 10, n96n, [255, 0, inpacket(3)]

PUT rudder, inpacket(3)

! DEBUG "set rudder servo: ", DEC inpacket(3), CR

! GOSUB SENDRESPONSE

! GOTO start

! 'set the sail

! SETSAIL:

HIGH 4

PAUSE 1

*** 94,290 ****

PUT sail, inpacket(3)

DEBUG "set sail: ", DEC inpacket(3), CR

! GOTO start

!

! NOTSAIL:

!

! IF (inpacket(1) <> "L") THEN NOTSLEEP

! DEBUG "going to sleep for: ", DEC inpacket(3), " seconds...", CR

! SLEEP inpacket(3)

! GOTO start

!

! NOTSLEEP:

!

! GOTO start

!

! SENDDATA:

!

! ' DEAL WITH TRANSMITTING DATA TO PALM

!

! IF (inpacket(1) <> "W") THEN NOTWIND

! GET winda, temp

! outpacket(0) = temp

! GET windb, temp

! outpacket(1) = temp

! SEROUT 1, n96n, [STR outpacket\10]

! DEBUG "Sent (wind) data: ", DEC outpacket(0), " ", DEC outpacket(1), CR

! GOTO start

!

! NOTWIND:

!

! IF (inpacket(1) <> "C" AND inpacket(2) <> "H") THEN NOTCOMP

! GET compass, temp

! outpacket(0) = temp

! SEROUT 1, n96n, [STR outpacket\10]

! DEBUG "Sent (compass) data: ", DEC outpacket(0), CR

91

! GOTO start

! NOTCOMP:

! IF (inpacket(1) <> "P" AND inpacket(2) <> "N") THEN NOTNORTHING

! FOR i = 0 TO 9

! GET (i + northing), temp

! outpacket(i) = temp

! NEXT

! SEROUT 1, n96n, [STR outpacket\10]

! DEBUG "Sent (northing) data: ", STR outpacket, CR

! GOTO start

! NOTNORTHING:

- IF (inpacket(1) <> "P" AND inpacket(2) <> "W") THEN NOTWESTING

- FOR i = 0 TO 9

- GET (i + westing), temp

- outpacket(i) = temp

- NEXT

- SEROUT 1, n96n, [STR outpacket\10]

- DEBUG "Sent (westing) data: ", STR outpacket, CR

- GOTO start

! NOTWESTING:

! IF (inpacket(1) <> "R" AND inpacket(2) <> "D") THEN NOTRUDDERSEND

GET rudder, temp

outpacket(0) = temp

SEROUT 1, n96n, [STR outpacket\10]

DEBUG "Sent (rudder) data: ", DEC outpacket(0), CR

GOTO start

! NOTRUDDERSEND:

! IF (inpacket(1) <> "S" AND inpacket(2) <> "L") THEN NOTSAILSEND

GET sail, temp

outpacket(0) = temp

SEROUT 1, n96n, [STR outpacket\10]

DEBUG "Sent (sail) data: ", DEC outpacket(0), CR

GOTO start

! NOTSAILSEND:

!

! IF (inpacket(1) <> "B" AND inpacket(2) <> "T") THEN NOTBAT

! GET battery, temp

! outpacket(0) = temp

! SEROUT 1, n96n, [STR outpacket\10]

! DEBUG "Sent (battery) data: ", DEC outpacket(0), CR

! GOTO start

!

! NOTBAT:

!

! IF (inpacket(1) <> "C" AND inpacket(2) <> "X") THEN NOTCUSTOM

! GET custom, temp

! outpacket(0) = temp

! SEROUT 1, n96n, [STR outpacket\10]

! DEBUG "Sent (custom) data: ", DEC outpacket(0), CR

! GOTO start

!

! NOTCUSTOM:

!

!

! GOTO start

!

! RUNGPS:

!

! ' DEAL WITH GPS

!

! SEROUT 1, n96n, ["!!!!!!!!!!"]

!

! DEBUG "Updating GPS readings", CR

!

! ' POWER UP AND WAIT FOR A FIX (pin 5 to switch it on, pin 6 for NMEA communication)

!

! ' run 1

!

! GOTO start

!

!

! RUNWIND:

! ' DEAL WITH WIND SENSORS

92

!

! 'SEROUT 1, n96n, ["!!!!!!!!!!"]

!

! ' DEBUG "Updating wind sensor values", CR

!

! ' DEAL WITH WIND SENSORS

!

! 'SEROUT 1, n96n, ["!!!!!!!!!!"]

!

! ' DEBUG "Updating wind sensor values", CR

HIGH 2

PAUSE 100

RCTIME 2, 1, elapsed

- 'SEROUT 1, n96n, [DEC elapsed]

- 'SEROUT 1, n96n, [CR]

-

outpacket(0) = elapsed/255

! outpacket(1) = elapsed - outpacket(0)

SEROUT 1, n96n, [STR outpacket\10]

-

DEBUG DEC elapsed, CR

-

GOTO start

! RUNCOMPASS:

! SEROUT 1, n96n, ["!!!!!!!!!!"]

! ' DEAL WITH COMPASS on pin 5

avg = 0

! compwt:

! IF IN3 = 0 THEN compwt

! RCTIME 3,1,elapsed

! elapsed = (elapsed - 900)/100

! IF (elapsed < 450) THEN compcool

! elapsed = 449

! compcool:

!

! avg = avg + elapsed

!

! 'debug "prelim ", ? elapsed, ? avg, CR

!

! FOR i = 1 TO 10

! wtl:

! IF IN3 = 0 THEN wtl

! RCTIME 3,1,elapsed

! elapsed = (elapsed - 900)/100

! IF (elapsed < 450) THEN compcooll

! elapsed = 449

! compcooll:

! avg = avg + elapsed

! tmp = avg/(i + 1)

! DEBUG ?tmp, ?avg, ?elapsed

! IF ((tmp + 100) - elapsed) < 150 THEN ok

! DEBUG "oops...", CR

! avg = elapsed * (i + 1)

! ok:

NEXT

! avg = avg/11

! avg = (avg * 255)/449

! PUT compass, avg

- ' run 3

! GOTO start

\ No newline at end of file

--- 94,227 ----

PUT sail, inpacket(3)

DEBUG "set sail: ", DEC inpacket(3), CR

! GOSUB SENDRESPONSE

! GOTO start

! SETUNWIND:

! HIGH 7

! HIGH 6

! PAUSE 6000

! LOW 6

! GOSUB SENDRESPONSE

! GOTO start

93

+ SENDRESPONSE:

! SEROUT 1, n96n, ["!!!!!!!!!!"]

! RETURN

! GETRUD:

! GOSUB CLEARDATA

GET rudder, temp

outpacket(0) = temp

SEROUT 1, n96n, [STR outpacket\10]

DEBUG "Sent (rudder) data: ", DEC outpacket(0), CR

GOTO start

! GETSAIL:

! GOSUB CLEARDATA

GET sail, temp

outpacket(0) = temp

SEROUT 1, n96n, [STR outpacket\10]

DEBUG "Sent (sail) data: ", DEC outpacket(0), CR

GOTO start

! GETWIND:

! GOSUB CLEARDATA

HIGH 2

PAUSE 100

RCTIME 2, 1, elapsed

outpacket(0) = elapsed/255

! outpacket(1) = elapsed - (outpacket(0)* 255)

SEROUT 1, n96n, [STR outpacket\10]

DEBUG DEC elapsed, CR

GOTO start

! GETCOMPASS:

! DEBUG "in RUNCOMPASS", CR

! GOSUB CLEARDATA

avg = 0

! 'compwt:

! 'DEBUG "waiting for IN11 to go nonzero", CR

! 'IF IN11 = 0 THEN compwt

! 'RCTIME 11,1,elapsed

! 'elapsed = (elapsed-1250)/125

! 'DEBUG "got data from compass", CR

! 'DEBUG DEC elapsed, CR

!

! 'min_elapsed = elapsed

! 'max_elapsed = elapsed

!

! 'FOR i=1 TO 5

! ' compwait:

! 'DEBUG "waiting for IN11 to go nonzero", CR

! 'IF IN11 = 0 THEN compwait

! 'RCTIME 11,1,elapsed

! 'elapsed = (elapsed-1250)/125

! 'DEBUG "got data from compass:", CR

! 'DEBUG DEC elapsed, CR

! 'IF elapsed < min_elapsed THEN NEWMIN

! 'IF elapsed > max_elapsed THEN NEWMAX

! 'endif:

! 'NEXT

!

! 'take the median value (half the range + min)

! 'avg = ((max_elapsed - min_elapsed) /2) + min_elapsed

!

! FOR i = 1 TO 30

! wt:

! IF IN11 = 1 THEN wt

! RCTIME 11,0,elapsed

! IF elapsed < avg THEN NOUPD

! avg = elapsed

! NOUPD:

NEXT

! avg = avg/200

!

! outpacket(0) = avg/255

! outpacket(1) = avg - (outpacket(0) * 255)

! SEROUT 1, n96n, [STR outpacket\10]

! DEBUG "AVG = ", DEC avg, CR

! DEBUG "Sent (compass) data: ", DEC outpacket(0), CR

94

! DEBUG "Sent (compass) data: ", DEC outpacket(1), CR

!

! GOTO start

!

! 'NEWMIN:

! ' min_elapsed = elapsed

! ' GOTO endif

! 'NEWMAX:

! ' max_elapsed = elapsed

! ' GOTO endif

! CLEARDATA:

!

! FOR i = 1 TO 9

! outpacket(i) = 0

! NEXT

!

! FOR i = 1 TO 9

! inpacket(i) = 0

! NEXT

!

! RETURN

\ No newline at end of file

95

Appendix E

Sail Servo and Wind Sensor Calibration
Data

Set 1 Set 2 Set 3
Sail
value

Sail Angle Wind Read-
ing

Sail Angle Wind Read-
ing

Sail Angle Wind Read-
ing

0 24 4462 37 3742 35 3983
2 54 3776 61 3308 42 3746
4 57 3725 63 2962 52 3556
6 52 3904 47 3690 53 3569
8 56 3798 57 3335 60 3212
10 58 3351 58 3393 52 3806
12 63 3448 64 3081 67 3239
14 70 3122 71 3030 62 2990
16 72 3234 76 2691 73 2768
18 74 2915 66 3307 76 2697
20 73 3166 76 2810 69 3064
22 74 3243 77 2763 84 2786
24 86 2763 80 2617 83 2427
26 82 2770 90 2319 77 2657
28 90 2443 88 2295 87 2483
30 95 2513 91 2251 90 2393
32 101 2119 95 2040 96 1901
34 101 2177 100 2011 103 1803
36 100 2176 102 2027 103 1722
38 104 2047 108 1804 105 1841
40 109 2284 105 1647 110 1580
42 110 1879 108 2037 112 1605
44 117 1950 118 1429 117 1446
46 123 1590 124 1115 122 1283
48 125 1471 122 1413 115 1784
50 136 1102 128 1065 123 1240
52 136 1113 137 819 125 1119

96

Set 1 Set 2 Set 3
Sail
value

Sail Angle Wind Read-
ing

Sail Angle Wind Read-
ing

Sail Angle Wind Read-
ing

54 142 1041 137 803 126 1100
56 146 1000 145 546 141 636
58 152 911 150 435 144 619
60 148 977 152 227 155 183
62 155 735 156 190 157 227
64 159 376 158 111 167 1
66 164 324 160 73 172 1
68 168 276 167 1 175 1
70 170 217 173 1 172 1
72 182 1 184 1 173 1
74 191 1 185 60448 189 59071
76 193 1 190 59587 193 9187
78 197 9862 197 58650 196 10154
80 199 12886 202 8983 198 9063
82 202 9653 207 9233 204 9209
84 206 11181 208 9097 207 9681
86 213 9407 215 9133 210 9628
88 217 8764 215 9205 215 8864
90 223 6183 219 8538 225 8938
92 225 5917 227 8852 226 8611
94 230 5703 229 8571 230 8873
96 235 5415 235 8016 232 8489
98 239 5505 238 8074 237 8218
100 244 5368 242 8295 241 8240
102 245 5220 246 8414 242 8044
104 252 5310 235 8473 251 7915
106 253 7523 252 8277 241 8089
108 259 7581 257 7936 240 8660
110 262 7838 257 7797 257 7880
112 265 7465 265 7566 251 7949
114 270 7586 270 7167 258 8014
116 271 7418 275 7164 277 7400
118 267 7150 280 7234 282 7388
120 280 7304 274 7252 267 7783
122 283 7370 284 7270 275 7239
124 290 7342 289 7051 292 6831
126 296 6777 297 6494 297 6945
128 301 6425 302 6849 284 6821
130 309 6479 307 6417 305 7106
132 316 6308 314 6393 307 6223
134 318 5808 302 6525 307 6484

97

Set 1 Set 2 Set 3
Sail
value

Sail Angle Wind Read-
ing

Sail Angle Wind Read-
ing

Sail Angle Wind Read-
ing

136 324 6090 310 6608 320 5966
138 327 5774 322 6143 309 6439
140 332 5806 325 6128 316 6045
142 338 5674 332 5520 333 5622
144 341 5513 340 5842 325 5721
146 340 5672 335 5963 341 5147
148 343 5561 345 5442 337 5863
150 347 5367 347 5251 342 5112
152 352 5191 354 5301 345 5553
154 356 4917 356 5213 353 4923
156 359 4765 2 5081 356 4993
158 2 4884 356 4937 5 4662
160 7 4479 4 4641 9 4700

98

Set 4 Set 5
Sail value Sail Angle Wind Reading Sail Angle Wind Reading
0 37 3683 33 4323
2 62 3185 57 3432
4 62 3194 52 3450
6 53 3483 55 3559
8 53 3328 57 3347
10 62 3123 62 3034
12 64 3017 66 2966
14 68 2961 73 2988
16 70 2901 75 2744
18 77 2823 78 2519
20 75 2838 74 2781
22 82 2669 77 2763
24 81 2656 80 2513
26 88 2247 90 2303
28 90 2538 82 2699
30 95 2138 87 2361
32 99 2063 97 2076
34 100 2019 101 1978
36 104 1912 99 1891
38 107 1712 105 1883
40 105 1944 107 1881
42 107 1770 114 1496
44 112 1705 119 1421
46 122 1332 120 1297
48 124 1125 127 1099
50 127 1190 125 1103
52 131 1043 1133 982
54 136 940 133 1047
56 142 781 140 661
58 144 638 145 460
60 158 261 147 408
62 162 201 155 220
64 164 47 157 106
66 157 318 168 1
68 163 99 161 209
70 172 1 161 29
72 182 1 180 1
74 187 58330 187 60128
76 193 10701 190 58791
78 195 8947 195 10573
80 199 9208 197 9685

99

Set 4 Set 5
Sail value Sail Angle Wind Reading Sail Angle Wind Reading
82 204 9406 201 9367
84 205 9182 205 9258
86 208 8796 210 8811
88 215 8769 216 9040
90 217 8725 218 8928
92 221 8820 220 8653
94 226 8578 224 8542
96 228 8475 231 8700
98 232 8183 234 8465
100 240 8363 225 8588
102 242 8296 240 8223
104 244 8143 247 7896
106 245 8229 250 7558
108 257 7779 256 8048
110 258 7445 257 7662
112 251 7734 262 8020
114 259 7966 267 7717
116 272 7445 272 7530
118 265 7517 276 7008
120 274 7640 265 7868
122 276 7068 280 7081
124 290 7156 284 7599
126 294 6811 290 6754
128 299 6882 297 7126
130 300 6278 301 6611
132 307 6415 306 6522
134 315 6519 306 6714
136 314 6293 304 6255
138 319 6259 315 6073
140 330 5771 322 5761
142 331 6102 326 6102
144 330 5954 334 5807
146 337 5684 337 5535
148 343 5478 342 5609
150 347 5605 349 5248
152 350 5574 349 4918
154 355 5201 349 5141
156 357 5080 350 5339
158 2 4727 352 4714
160 3 4965 5 4716

100

Appendix F

Rudder Calibration Data

Servo Value Rudder Angles
Set 1 Set 2 Set 3 Set 4 Set 5

0 312 312 312 312 312
25 312 312 312 312 312
50 313 314 313 313 313
75 327 329 327 329 329
100 347 347 347 346 346
125 4 3 4 4 4
150 18 18 19 17 18
175 32 33 34 32 32
200 42 42 39 40 40
225 42 42 39 40 40
250 42 42 39 40 40

101

Appendix G

Compass Calibration Data

Heading Compass Out-
put Value

Heading Compass Out-
put Value

Heading Compass Out-
put Value

0 109 45 126 90 154
0 112 45 128 90 153
0 108 45 129 90 154
0 113 45 129 90 158
0 110 45 127 90 143
0 100 45 127 90 152
0 104 45 128 90 145
0 102 45 129 90 144
0 107 45 126 90 156
0 105 45 128 90 156
0 98 45 126 90 152
0 109 45 128 90 146
0 111 45 129 90 145
0 104 45 124 90 157
0 107 45 121 90 147
0 108 45 128 90 157
0 108 45 127 90 145
0 111 45 127 90 146
0 109 45 123 90 142
0 109 45 127 90 139
0 109 45 126 90 147
0 111 45 120 90 149
0 108 45 116 90 150
0 108 45 127 90 157
0 111 45 127 90 157

102

Heading Compass Out-
put Value

Heading Compass Out-
put Value

Heading Compass Out-
put Value

135 178 180 210 225 20
135 175 180 204 225 22
135 178 180 208 225 20
135 174 180 210 225 21
135 179 180 208 225 19
135 168 180 208 225 20
135 180 180 210 225 21
135 180 180 210 225 18
135 179 180 204 225 20
135 176 180 209 225 20
135 178 180 207 225 19
135 180 180 205 225 19
135 178 180 207 225 18
135 173 180 208 225 18
135 178 180 208 225 19
135 180 180 211 225 19
135 175 180 211 225 20
135 180 180 207 225 19
135 177 180 207 225 19
135 179 180 211 225 20
135 180 180 206 225 20
135 163 180 210 225 19
135 176 180 209 225 19
135 180 180 208 225 19
135 178 180 212 225 19

103

Heading Compass Out-
put Value

Heading Compass Out-
put Value

270 48 315 1129
270 52 315 2142
270 50 315 3222
270 54 315 4261
270 52 315 5313
270 52 315 6434
270 54 315 7470
270 53 315 8514
270 53 315 9522
270 53 315 10566
270 53 315 11574
270 52 315 12595
270 51 315 13632
270 52 315 14660
270 52 315 15667
270 54 315 16718
270 53 315 17730
270 53 315 18737
270 52 315 19753
270 50 315 20803
270 52 315 21810
270 50 315 22865
270 52 315 23889
270 53 315 24896
270 51 315 25911

104

Appendix H

Sample logging output (Simulator
Generated)

Milliseconds elapsed heading X coordinate Y Coordinate Heading Error
1129 339 24 16 -134
2142 334 38 22 -129
3222 316 51 30 -111
4261 297 59 40 -92
5313 278 62 49 -74
6434 259 63 54 -55
7470 240 59 66 -35
8514 232 55 74 -27
9522 228 48 83 -23
10566 224 42 90 -19
11574 220 36 96 -15
12595 218 31 101 -13
13632 214 26 106 -9
14660 212 16 113 -7
15667 210 7 119 -5
16718 208 0 124 -93
17730 194 -8 128 -79
18737 176 -13 129 -61
19753 158 -13 129 -43
20803 144 -15 128 -29
21810 138 -17 125 -23
22865 134 -21 122 -19
23889 132 -25 117 -17
24896 128 -29 112 -13
25911 126 -33 105 -11
26918 122 -37 98 -7

105

Appendix I

Sample logging output (Boat
Generated)

As the GPS Receiver is not connected with the Basic Stamp or Psion it logs data independently.
Although it is theoretically possible to merge the data from the GPS and the Psion no attempt
was made to do this given the complexity of the task. As a result all position information is
shown as zeros.
Milliseconds elapsed heading X coordinate Y Coordinate Heading Error
1129 339 0 0 -134
2142 334 0 0 -129
3222 316 0 0 -111
4261 297 0 0 -92
5313 278 0 0 -74
6434 259 0 0 -55
7470 240 0 0 -35
8514 232 0 0 -27
9522 228 0 0 -23
10566 224 0 0 -19
11574 220 0 0 -15
12595 218 0 0 -13
13632 214 0 0 -9
14660 212 0 0 -7
15667 210 0 0 -5
16718 208 0 0 -93
17730 194 0 0 -79
18737 176 0 0 -61
19753 158 0 0 -43
20803 144 0 0 -29

106

Appendix J

Sail setting lookup table for the PID
controller.

Wind Angle Sail Angle
0 0
45 0
68 22
90 45
135 68
179 90
180 270
225 208
270 325
293 342
315 359
360 359

107

Appendix K

Fuzzy Logic Set De�nition Tables

Figure K.1: Fuzzy logic set de�nitions for classifying heading error.

108

Figure K.2: Fuzzy logic set de�nitions for setting the rudder.

Figure K.3: Fuzy logic set de�nitions for classifying wind direction.

109

Figure K.4: Fuzzy logic set de�nitions for setting the sail position.

110

Appendix L

Init scripts for use on the Psion

#!/bin/sh

#attach /dev/ttyAM0 to /dev/ircomm0

irattach /dev/ttyAM0

Figure L.1: The /etc/init.d/S46irda script used to start the infra-red device upon boot on the
Psion.

111

/etc/inittab

Copyright (C) 2001 Erik Andersen <andersen@codepoet.org>

Note: BusyBox init doesn't support runlevels. The runlevels field is

completely ignored by BusyBox init.

Format for each entry: <id>:<runlevels>:<action>:<process>

id == tty to run on, or empty for /dev/console

runlevels == ignored

action == one of sysinit, respawn, askfirst, wait, and once

process == program to run

Startup the system

null::sysinit:/bin/mount -o remount,rw /

null::sysinit:/bin/mount -t proc proc /proc

null::sysinit:/bin/mount -a

null::sysinit:/bin/hostname -F /etc/hostname

null::sysinit:/sbin/ifconfig lo 127.0.0.1 up

null::sysinit:/sbin/route add -net 127.0.0.0 netmask 255.0.0.0 lo

now run any rc scripts

::sysinit:/etc/init.d/rcS

Set up a couple of getty'

::respawn:/bin/login

Put a getty on the infra-red port

ircomm0::respawn:/sbin/getty -h -L ircomm0 9600 vt100

Logging junk

null::sysinit:/bin/touch /var/log/messages

null::respawn:/sbin/syslogd -n -m 0

null::respawn:/sbin/klogd -n tty3

::respawn:/usr/bin/tail -f /var/log/messages

Stuff to do for the 3-finger salute

::ctrlaltdel:/sbin/reboot

Stuff to do before rebooting

null::shutdown:/usr/bin/killall klogd

null::shutdown:/usr/bin/killall syslogd

null::shutdown:/bin/umount -a -r

null::shutdown:/sbin/swapoff -a

Figure L.2: The modi�ed /etc/initab script used to automatically start a login console on the
infra-red port. This also causes the login program (called getty) to respawn everytime it exits.

112

Appendix M

Spreadsheet used to verify heading
error outputs

Current
Heading

Desired
Heading

Actual Error Current
Heading

Desired
Heading

Actual Error

0 1 1 45 0 -45
0 90 90 45 44 -1
0 180 180 or -180 45 46 1
0 270 -90 45 90 45
0 359 -1 45 180 135
90 89 -1 45 270 -135
90 91 1 135 0 -135
90 180 90 135 90 -45
90 270 180 or -180 135 134 -1
90 0 -90 135 136 1
180 0 180 or -180 135 180 45
180 90 -90 135 270 135
180 179 -1 225 0 -135
180 181 1 225 90 135
180 270 90 225 180 -45
270 0 90 225 224 -1
270 90 180 or -180 225 226 1
270 180 -90 225 270 45
270 269 -1 315 0 -45
270 271 1 315 90 135

315 180 -135
315 270 -45
315 314 -1
315 316 1

Table M.1: Example of the veri�cation spread sheets used to check the heading errors determined
by the code. The heading error code was tested against all combinations shown in this table in
to show it was working correctly. If the output di�ered from what was expected then the test
fails.

113

Appendix N

GPS Plots of the test runs

Figure N.1: The GPS plot for the �rst journey.

114

Figure N.2: The GPS plot showing the three journeys made during the second test run. For all
three of these the proportional constant was set to a value of two. The trips to return the boat
to its start point have been removed.

Figure N.3: GPS plot showing both the outbound and return journeys made during the third
test run. For this test the proportional constant was set to one.

115

Figure N.4: GPS Plot of the fourth test. It was intended that the boat would sail to the same
point at which it turned in the previous test, then turn around sail back towards the shore and
repeat this three times. Unfortunately the wind dropped soon after the boat reached the turning
point.

116

Appendix O

Heading/Time Plots of the test runs

Figure O.1: Heading versus time plot for the �rst test run. As the code stopped logging early in
this test it does not cover the full journey shown in the GPS plot.

117

Figure O.2: Heading versus time plot for the second run. All three runs are shown as is the time
spent carrying the boat back to the original start position.

118

Figure O.3: Heading versus time plot for the third run. Both the outward and return journeys
are shown. There is a small gap during which time no logging took place as the sail was moving.

119

Figure O.4: Heading versus time plot for the fourth run. The green lines show the division
between each three minute run of the fuzzy logic controller.

120

Appendix P

Simulator Testing Plots

Figure P.1: Plot showing the course taken during the simulated PID controller beam reach test.

121

Figure P.2: Plot showing the course taken during the simulated PID controller triangle test.

Figure P.3: Plot showing the course taken during the simulated Fuzzy logic controller beam
reach test.

122

Figure P.4: Plot showing the course taken during the simulated fuzzy logic controller triangle
test.

123

124

Appendix Q

Original Project Timetable

Figure Q.1: Original timetable - October to December.

125

Figure Q.2: Original timetable, January to May.

126

